Preservation of High-Moisture Sorghum Silage Using Combination of Biological and Chemical Additives in the Tropical Region
Abstract
This study aimed to investigate the effect of the biological and chemical additives on fermentation characteristics, aerobic stability, and ruminal digestibility of high-moisture sorghum silage. A mixture of Lactiplantibacillus plantarum FNCC 0020 (LP) and Limosilactobacillus fermentum BN21 (LF) was used as a biological additive and potassium sorbate as a chemical additive. At the milk ripening stage (26.8% of DM), sorghum was harvested, chopped to 3-5 cm length, and ensiled into 20 L silo (5 kg) for 100 days. Subsequently, various additives were added, including a control group without additives (CON), LF + LP with a ratio of 1:1 at 1 x 105 cfu/g fresh weight (INO), potassium sorbate at 1 g/kg fresh weight (PS), and INO + PS (MIX). Each treatment used 5 silos as replication. The results showed that INO silage had the lowest (p<0.05) pH with the highest (p<0.05) contents of lactate and acetate, as well as lactic acid bacteria (LAB) count. PS silage produced the minimum contents of lactate and acetate but had lower yeast compared to CON silage. MIX silage had lower (p<0.05) lactate and acetate contents than CON silage, with a similar effect on yeast inhibition to PS silage. Furthermore, PS and MIX silages had higher (p<0.05) aerobic stability and in vitro digestibility of dry matter and organic matter than CON and INO. These results showed that combining biological and chemical additives was more effective in improving fermentation, aerobic stability, and ruminal digestibility of high-moisture sorghum silage.
Full text article
References
Association of Official Analytical Chemists. 2005. Official Methods of Analysis, 18th ed. AOAC International. https://doi.org/10.1002/0471740039.vec0284
Andrada, E., Marquez, A., Chagra Dib, E. P., Gauffin-Cano, P., & Medina, R. B. (2023). Corn stover silage inoculated with ferulic acid esterase producing L. johnsonii, L. plantarum, L. fermentum, and L. brevis strains: Fermentative and Nutritional Parameters. Fermentation, 9(4), 331. https://doi.org/10.3390/fermentation9040331
Araújo, M. L. G. M. L., Santos, E. M., De Carvalho, G. G. P., Pina, D. dos S., De Oliveira, J. S., Tosto, M. S. L., Silva, D. S., Perazzo, A. F., Pereira, D. M., Nascimento, T. V. C., Ferreira, D. de J., Cavalcanti, H. S., Santos, F. N. de S., Ribeiro, M. D., & Zanine, A. de M. (2023). Ensiling sorghum with urea, aerobic exposure and effects on intake, digestibility, ingestive behaviour and blood parameters of feedlot lambs. Animals, 13(12), 2005. https://doi.org/10.3390/ani13122005
Arriola, K. G., Kim, S. C., Huisden, C. M., & Adesogan, A. T. (2012). Stay-green ranking and maturity of corn hybrids: 1. Effects on dry matter yield, nutritional value, fermentation characteristics, and aerobic stability of silage hybrids in Florida. Journal of Dairy Science, 95(2), 964–974. https://doi.org/10.3168/jds.2011-4524
Arriola, K. G., Vyas, D., Kim, D., Agarussi, M. C. N., Silva, V. P., Flores, M., Jiang, Y., Yanlin, X., Pech-Cervantes, A. A., Ferraretto, L. F., & Adesogan, A. T. (2021). Effect of Lactobacillus hilgardii, Lactobacillus buchneri, or their combination on the fermentation and nutritive value of sorghum silage and corn silage. Journal of Dairy Science, 104(9), 9664–9675. https://doi.org/10.3168/jds.2020-19512
Auerbach, H., & Nadeau, E. (2020). Effects of additive type on fermentation and aerobic stability and its interaction with air exposure on silage nutritive value. Agronomy, 10(9), 1229. https://doi.org/10.3390/agronomy10091229
Auerbach, H., Theobald, P., Kroschewski, B., & Weiss, K. (2020). Effects of various additives on fermentation, aerobic stability and volatile organic compounds in whole-crop rye silage. Agronomy, 10(12), 1873. https://doi.org/10.3390/agronomy10121873
Chaney, A. L., & Marbach, E. P. (1962). Modified reagents for determination of urea and ammonia. clinical chemistry, 8(2), 130–132. https://doi.org/10.1093/clinchem/8.2.130
Chauhan, N., Kumari, N., Mani, V., Pradhan, D., Gowane, G. R., Kumar, S., & Tyagi, N. (2024). Effects of Lactiplantibacillus plantarum, Limosilactobacillus fermentum, and propionic acid on the fermentation process of sugarcane tops silages along with variations in ph, yeast and mould count after aerobic exposure. Waste and Biomass Valorization, 15(4), 2215–2230. https://doi.org/10.1007/s12649-023-02280-8
Chen, L., Li, P., Gou, W., You, M., Cheng, Q., Bai, S., & Cai, Y. (2020). Effects of inoculants on the fermentation characteristics and in vitro digestibility of reed canary grass (Phalaris arundinacea L.) silage on the Qinghai-Tibetan Plateau. Animal Science Journal, 91(1). https://doi.org/10.1111/asj.13364
Da Silva, E. B., Polukis, S. A., Smith, M. L., Voshell, R. S., Leggett, M. J., Jones, P. B., & Kung, L. (2024). The use of Lentilactobacillus buchneri PJB1 and Lactiplantibacillus plantarum MTD1 on the ensiling of whole-plant corn silage, snaplage, and high-moisture corn. Journal of Dairy Science, 107(2), 883–901. https://doi.org/10.3168/jds.2023-23672
Dai, T., Dong, D., Wang, S., Zong, C., Yin, X., Jia, Y., & Shao, T. (2022). The effectiveness of chemical additives on fermentation profiles, aerobic stability and in vitro ruminal digestibility of total mixed ration ensiled with Napier grass and wet distillers’ grains in southeast China. Italian Journal of Animal Science, 21(1), 979–989. https://doi.org/10.1080/1828051X.2022.2078234
Danner, H., Holzer, M., Mayrhuber, E., & Braun, R. (2003). Acetic acid increases stability of silage under aerobic conditions. Applied and Environmental Microbiology, 69(1), 562–567. https://doi.org/10.1128/AEM.69.1.562-567.2003
Dong, Z., Li, J., Wang, S., Dong, D., & Shao, T. (2022). Time of day for harvest affects the fermentation parameters, bacterial community, and metabolic characteristics of sorghum-sudangrass hybrid silage. MSphere, 7(4). https://doi.org/10.1128/msphere.00168-22
Fawzi, N. Y., Abdelghani, D. Y., Abdel-azim, M. A., Shokier, C. G., Youssef, M. W., Gad El-Rab, M. K., Gad, A. I., & Abou-Taleb, K. A. (2022). The ability of probiotic lactic acid bacteria to ferment Egyptian broken rice milk and produce rice-based yoghurt. Annals of Agricultural Sciences, 67(1), 107–118. https://doi.org/10.1016/j.aoas.2022.06.004
Fitriani, D., Ardiansyah, M., Kurniawati, A., Bachruddin, Z., & Paradhipta, D. H. V. (2024). Chemical and physical quality, fermentation characteristics, aerobic stability, and ruminal degradability of sorghum silage inoculated with Lactiplantibacillus plantarum and Limosilactobacillus fermentum. Tropical Animal Science Journal, 47(4), 483-492. https://doi.org/10.5398/tasj.2024.47.4.483
Guo, G., Shen, C., Liu, Q., Zhang, S., Shao, T., Wang, C., Wang, Y., Xu, Q., & Huo, W. (2020). The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. Journal of Integrative Agriculture, 19(3), 838–847. https://doi.org/10.1016/S2095-3119(19)62707-3
Hafner, S. D., Windle, M., Merrill, C., Smith, M. L., Franco, R. B., & Kung, L. (2015). Effects of potassium sorbate and Lactobacillus plantarum MTD1 on production of ethanol and other volatile organic compounds in corn silage. Animal Feed Science and Technology, 208, 79–85. https://doi.org/10.1016/j.anifeedsci.2015.07.007
Hall, M. B. (2003). Challenges with nonfiber carbohydrate methods1,2. Journal of Animal Science, 81(12), 3226–3232. https://doi.org/10.2527/2003.81123226x
Huang, Y., Liang, L., Dai, S., Wu, C., Chen, C., & Hao, J. (2021). Effect of different regions and ensiling periods on fermentation quality and the bacterial community of whole-plant maize silage. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.743695
Jardim, A. M. da R. F., Silva, T. G. F. da, Souza, L. S. B. de, Araújo Júnior, G. do N., Alves, H. K. M. N., Souza, M. de S., Araújo, G. G. L. de, & Moura, M. S. B. de. (2021). Intercropping forage cactus and sorghum in a semi-arid environment improves biological efficiency and competitive ability through interspecific complementarity. Journal of Arid Environments, 188, 104464. https://doi.org/10.1016/J.JARIDENV.2021.104464
Juráček, M., Bíro, D., Šimko, M., Gálik, B., Rolinec, M., Hanušovský, O., Kalúzová, M., Zábranský, L., & Ševčík, P. (2024). Effect of various additives on the fermentation quality of corn silage. Journal of Central European Agriculture, 25(1), 146–153. https://doi.org/10.5513/JCEA01/25.1.4120
Kim, D., Dong Lee, K., & Choon Choi, K. (2021). Role of LAB in silage fermentation: Effect on nutritional quality and organic acid production—An overview. AIMS Agriculture and Food, 6(1), 216–234. https://doi.org/10.3934/agrfood.2021014
Kung, L., Shaver, R. D., Grant, R. J., & Schmidt, R. J. (2018). Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101(5), 4020–4033. https://doi.org/10.3168/jds.2017-13909
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR : An R package for multivariate analysis. Journal of Statistical Software, 25(1). https://doi.org/10.18637/jss.v025.i01
Li, F., Ke, W., Ding, Z., Bai, J., Zhang, Y., Xu, D., Li, Z., & Guo, X. (2020). Pretreatment of Pennisetum sinese silages with ferulic acid esterase-producing lactic acid bacteria and cellulase at two dry matter contents: Fermentation characteristics, carbohydrates composition and enzymatic saccharification. Bioresource Technology, 295, 122261. https://doi.org/10.1016/j.biortech.2019.122261
Li, Y., da Silva, E. B., Novinski, C. O., & Kung, L. (2021). Effect of microbial and chemical additives on the fermentation and aerobic stability of alfalfa silage ensiled at 2 dry matters and subjected to air stress during storage. Journal of Animal Science, 99(7). https://doi.org/10.1093/jas/skab174
Li, F., Usman, S., Huang, W., Jia, M., Kharazian, Z. A., Ran, T., Li, F., Ding, Z., & Guo, X. (2023). Effects of inoculating feruloyl esterase-producing Lactiplantibacillus plantarum A1 on ensiling characteristics, in vitro ruminal fermentation and microbiota of alfalfa silage. Journal of Animal Science and Biotechnology, 14(1), 43. https://doi.org/10.1186/s40104-023-00837-0
Liu, C., Tian, L., Yu, W., Wang, Y., Yao, Z., Liu, Y., Yang, L., Liu, C., Shi, X., Liu, T., Chen, B., Wang, Z., Yu, H., & Zhou, Y. (2024). Natural variation in SbTEF1 contributes to salt tolerance in sorghum seedlings. Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2024.03.030
Makkar, H. P. S. (2003). Measurement of total phenolics and tannins using folin-ciocalteu method. in quantification of tannins in tree and shrub foliage (pp. 49–51). Springer Netherlands. https://doi.org/10.1007/978-94-017-0273-7_3
Muck, R. E., Nadeau, E. M. G., McAllister, T. A., Contreras-Govea, F. E., Santos, M. C., & Kung, L. (2018). Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 101(5), 3980–4000. https://doi.org/10.3168/jds.2017-13839
Ni, K., Yang, H., Hua, W., Wang, Y., & Pang, H. (2016). Selection and characterisation of lactic acid bacteria isolated from different origins for ensiling Robinia pseudoacacia and Morus alba L. leaves. Journal of Integrative Agriculture, 15(10), 2353–2362. https://doi.org/10.1016/S2095-3119(15)61251-5
Orrico Junior, M. A. P., Vendramini, J. M. B., Erickson, J., Moriel, P., Silveira, M. L. A., Aguiar, A. D., Sanchez, J. M. D., da Silva, W. L., & da Silva, H. M. (2020). Nutritive value and fermentation characteristics of silages produced from different sweet sorghum plant components with or without microbial inoculation. Applied Animal Science, 36(6), 777–783. https://doi.org/10.15232/aas.2020-02027
Pahlow, G., Muck, R. E., Driehuis, F., Elferink, S. J. W. H. O., & Spoelstra, S. F. (2015). Microbiology of ensiling (pp. 31–93). https://doi.org/10.2134/agronmonogr42.c2
Paradhipta, D. H. V., Joo, Y. H., Lee, H. J., Lee, S. S., Kim, D. H., Kim, J. D., & Kim, S. C. (2019). Effects of inoculant application on fermentation quality and rumen digestibility of high moisture sorghum-sudangrass silage. Journal of Applied Animal Research, 47(1), 486–491. https://doi.org/10.1080/09712119.2019.1670667
Paradhipta, D. H. V., Lee, S. S., Kang, B., Joo, Y. H., Lee, H. J., Lee, Y., Kim, J., & Kim, S. C. (2020). Dual-purpose inoculants and their effects on corn silage. Microorganisms, 8(5), 765. https://doi.org/10.3390/microorganisms8050765
Paradhipta, D. H. V., Joo, Y. H., Lee, H. J., Lee, S. S., Noh, H. T., Choi, J. S., Kim, J., Min, H. G., & Kim, S. C. (2021). Effects of inoculants producing antifungal and carboxylesterase activities on corn silage and its shelf life against mold contamination at feed-out phase. Microorganisms, 9(3), 558. https://doi.org/10.3390/microorganisms9030558
Pitiwittayakul, N., Bureenok, S., & Schonewille, J. T. (2021). Selective thermotolerant lactic acid bacteria isolated from fermented juice of epiphytic lactic acid bacteria and their effects on fermentation quality of stylo silages. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.673946
Puntillo, M., Gaggiotti, M., Oteiza, J. M., Binetti, A., Massera, A., & Vinderola, G. (2020). Potential of lactic acid bacteria isolated from different forages as silage inoculants for improving fermentation quality and aerobic stability. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.586716
Richa, L., Colin, B., Pétrissans, A., Wallace, C., Hulette, A., Quirino, R. L., Chen, W.-H., & Pétrissans, M. (2023). Catalytic and char-promoting effects of potassium on lignocellulosic biomass torrefaction and pyrolysis. Environmental Technology & Innovation, 31, 103193. https://doi.org/10.1016/j.eti.2023.103193
Salmoral, G., Ababio, B., & Holman, I. (2020). Drought Impacts, Coping Responses and Adaptation in the UK Outdoor Livestock Sector: Insights to Increase Drought Resilience. Land, 9(6), 202. https://doi.org/10.3390/land9060202
Shan, G., Buescher, W., Maack, C., Lipski, A., Acir, I.-H., Trimborn, M., Kuellmer, F., Wang, Y., Grantz, D. A., & Sun, Y. (2021). Dual sensor measurement shows that temperature outperforms pH as an early sign of aerobic deterioration in maize silage. Scientific Reports, 11(1), 8686. https://doi.org/10.1038/s41598-021-88082-1
Shen, J., Zheng, W., Xu, Y., & Yu, Z. (2023). The inhibition of high ammonia to in vitro rumen fermentation is pH dependent. Frontiers in Veterinary Science, 10. https://doi.org/10.3389/fvets.2023.1163021
Singh, D., Yadav, R., & Tyagi, N. (2021). Effect of propionic and potassium sorbate supplementation on quality and performance of sugarcane tops silage. Indian Journal of Dairy Science, 74(5), 439–444. https://doi.org/10.33785/IJDS.2021.v74i05.010
Steel, R. G. D., Torrie, J. H., & Dicky, D. A. (1997). Principles and procedures of statistics, a biometrical approach (3rd Edition). McGraw Hill, Inc. Book Co.
Su, R., Ni, K., Wang, T., Yang, X., Zhang, J., Liu, Y., Shi, W., Yan, L., Jie, C., & Zhong, J. (2019). Effects of ferulic acid esterase-producing Lactobacillus fermentum and cellulase additives on the fermentation quality and microbial community of alfalfa silage. PeerJ, 7, e7712. https://doi.org/10.7717/peerj.7712
Suharti, S., Oktafiani, H., Sudarman, A., Baik, M., & Wiryawan, K. G. (2021). Effect of cyanide-degrading bacteria inoculation on performance, rumen fermentation characteristics of sheep fed bitter cassava (Manihot esculenta Crantz) leaf meal. Annals of Agricultural Sciences, 66(2), 131–136. https://doi.org/10.1016/j.aoas.2021.09.001
Terler, G., Resch, R., Gappmaier, S., & Gruber, L. (2021). Nutritive value for ruminants of different fresh and ensiled sorghum ( Sorghum bicolor (L.) Moench) varieties harvested at varying maturity stages. Archives of Animal Nutrition, 75(3), 167–182. https://doi.org/10.1080/1745039X.2021.1924016
Tilley, J. M. A., & Terry, R. A. (1963). A two‐stage technique for the in vitro digestion of forage crops. Grass and Forage Science, 18(2), 104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
Vargas, J. A. C., de Araujo, T. C., & Mezzomo, R. 2020. A pro-tocol for the extraction, identification, and quantification of short-chain fatty acids (SCFAs) in silages using Reverse Phase – High Performance Liquid Chromatography with Diode Array Detector (RP-HPLC-DAD). PROTOCOL (Version 1) available at Protocol Exchange [https://doi.org/10.21203/rs.3.pex-1170/v1]
Wan, J. C., Xie, K. Y., Wang, Y. X., Liu, L., Yu, Z., & Wang, B. (2021). Effects of wilting and additives on the ensiling quality and in vitro rumen fermentation characteristics of sudangrass silage. Animal Bioscience, 34(1), 56–65. https://doi.org/10.5713/ajas.20.0079
Wang, D., Luo, C., Li, C., Zhang, S., Lu, N., Yang, Z., Yu, X., Cao, Z., Yang, H., Li, S., Shao, W., & Wang, W. (2022). Study on the relationship between fermentation-accumulated temperature and nutrient loss of whole-plant corn silage. Agronomy, 12(11), 2752. https://doi.org/10.3390/agronomy12112752
Wang, L., Bao, J., Zhuo, X., Li, Y., Zhan, W., Xie, Y., Wu, Z., & Yu, Z. (2023a). Effects of Lentilactobacillus buchneri and chemical additives on fermentation profile, chemical composition, and nutrient digestibility of high-moisture corn silage. Frontiers in Veterinary Science, 10. https://doi.org/10.3389/fvets.2023.1296392
Wang, S., Liu, H., Zhao, J., Dong, Z., Li, J., & Shao, T. (2023b). Influences of organic acid salts and bacterial additives on fermentation profile, aerobic stability, and in vitro digestibility of total mixed ration silage prepared with wet hulless barley distillers’ grains. Agronomy, 13(3), 672. https://doi.org/10.3390/agronomy13030672
Wang, S., Zhang, G., Zhao, J., Dong, Z., Li, J., & Shao, T. (2023c). Fermentation quality, aerobic stability and in vitro gas production kinetics and digestibility in total mixed ration silage treated with lactic acid bacteria inoculants and antimicrobial additives. Italian Journal of Animal Science, 22(1), 430–441. https://doi.org/10.1080/1828051X.2023.2206422
Wu, B., Hu, Z., Wei, M., Yong, M., & Niu, H. (2022). Effects of inoculation of Lactiplantibacillus plantarum and Lentilactobacillus buchneri on fermentation quality, aerobic stability, and microbial community dynamics of wilted Leymus chinensis silage. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.928731
Xie, Y., Xu, S., Li, W., Wang, M., Wu, Z., Bao, J., Jia, T., & Yu, Z. (2020). Effects of the application of Lactobacillus plantarum inoculant and potassium sorbate on the fermentation quality, in vitro digestibility and aerobic stability of total mixed ration silage based on alfalfa silage. Animals, 10(12), 2229. https://doi.org/10.3390/ani10122229
Zhang, J., Liu, Y., Wang, Z., Bao, J., Zhao, M., Si, Q., Sun, P., Ge, G., & Jia, Y. (2023). Effects of different types of lab on dynamic fermentation quality and microbial community of native grass silage during anaerobic fermentation and aerobic exposure. Microorganisms, 11(2), 513. https://doi.org/10.3390/microorganisms11020513
Zhang, S., Wang, J., Lu, S., Chaudhry, A. S., Tarla, D., Khanaki, H., Raja, I. H., & Shan, A. (2024). Effects of sweet and forge sorghum silages compared to maize silage without additional grain supplement on lactation performance and digestibility of lactating dairy cows. Animals, 14(11), 1702. https://doi.org/10.3390/ani14111702
Zheng, Y., Yu, C., Cheng, Y. S., Zhang, R., Jenkins, B., & VanderGheynst, J. S. (2011). Effects of ensilage on storage and enzymatic degradability of sugar beet pulp. Bioresource Technology, 102(2), 1489–1495. https://doi.org/10.1016/j.biortech.2010.09.105
Authors
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.