Optimizing Apparent Metabolizable Energy and Digestible Amino Acids of Layer Feed by Response Surface Methodology

H. Widjaja(1) , Nahrowi(2) , A. Jayanegara(3) , D. Utomo(4) , K. Hazen(5)
(1) Postgraduate School, IPB University,
(2) Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University,
(3) Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University,
(4) Charoen Pokphand Indonesia Corp.,
(5) Charoen Pokphand Indonesia Corp.

Abstract

Optimizing dietary energy and amino acid levels is essential for enhancing the performance and cost-efficiency of laying hens. The primary goals were to identify the optimal apparent metabolizable energy (AMEn) and digestible lysine (dLys) levels that maximize hen-day production (HDP) and egg weight (EW) while minimizing feed conversion ratio (FCR) and FC. A total of 150 cages, each housing five hens, were used. Hens with 24 weeks of age were assigned to ten dietary treatments following a central composite design (CCD), with AMEn levels ranging from 2,400 to 2,733 kcal/kg and dLys from 0.42% to 1.02%. The experiment was carried out during peak production (24 to 38 weeks of age). Response surface methodology (RSM) combined with CCD effectively optimized AMEn and dAA levels, providing practical insights for formulating cost-effective diets for commercial laying hens. Dietary dLys significantly influenced HDP and EW, while AMEn affected feed intake (FI). The optimal conditions, determined by the desirability function (DF), were AMEn of 2,660 kcal/kg and dLys of 0.81%, maximizing HDP and EW with minimal FCR and FC. Excluding EW from DF optimization, the best results were achieved at AMEn of 2,623 kcal/kg and dLys of 0.78%.

Full text article

Generated from XML file

References

Al-Radhi, Y., Roy, K., Clifton, G. C., & Lim, J. B. P. (2025). Improving thermal transmittance estimation accuracy in cold-formed steel residential envelopes using response surface methodology: A numerical-based approach. Energy and Buildings, 329, Article 115280. https://doi.org/10.1016/j.enbuild.2025.115280

Barzegar, S., Wu, S. B., Noblet, J., Choct, M., & Swick, R. A. (2019a). Energy efficiency and net energy prediction of feed in laying hens. Journal of Poultry Science, 98(11), 5746–5758. https://doi.org/10.3382/ps/pez362

Barzegar, S., Wu, S. B., Noblet, J., & Swick, R. A. (2019b). Metabolizable energy of corn, soybean meal and wheat for laying hens. Journal of Poultry Science, 98(11), 5876–5882. https://doi.org/10.3382/ps/pez333

Caldas, J. V., Hilton, K., Boonsinchai, N., England, J. A., Mauromoustakos, A., & Coon, N. C. (2018). Dynamics of nutrient utilization, heat production, and body composition in broiler breeder hens during egg production. Journal of Poultry Science, 97(8), 2845–2853. https://doi.org/10.3382/ps/pey133

Classen, H. L. (2017). Diet energy and feed intake in chickens. Animal Feed Science and Technology, 233, 13-21. https://doi.org/10.1016/j.anifeedsci.2016.03.004

CVB Table Booklet Feeding of Poultry. (2018). Feeding standards, feeding advices and nutritional values of feed ingredients for poultry. CVB-series No. 61: July 2018. Federatie Nederlandse Diervoederketen.

Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214-219. https://doi.org/10.1080/00224065.1980.11980968

Hu, Z., Xu, H., Zhang, Z., Lu, Y., Zhou, Y., Zhu, J., Deng, Q., Wang, X., Lu, Y., Zhang, Y., & Wang, Y. (2025). Comparative analysis of the performance, egg quality and ovarian immune function of fast and slow feather strains in Tianfu green shell laying hens at various stages of egg production. Poultry Science, 104(2), Article 104747. https://doi.org/10.1016/j.psj.2024.104747

Hy-Line. (2020). Hy-Line brown max management guide. Hy-Line. https://www.hyline.com/filesimages/Hy-Line-Products/Hy-Line-Product-PDFs/Brown/Brown%20Max/HLB%20Max%20Guide%20ENG.pdf

Jian, H., Miao, S., Liu, Y., Li, H., Zhou, W., Wang, X., Dong, X., & Zou, X. (2021). Effects of dietary valine levels on production performance, egg quality, antioxidant capacity, immunity, and intestinal amino acid absorption of laying hens during the peak lay period. Animals, 11(7), Article 1972. https://doi.org/10.3390/ani11071972

Kumar, D., Raginski, C., Schwean-Lardner, K., & Classen, H. L. (2018). Assessing the performance response of laying hens to intake levels of digestible balanced protein from 27 to 66 wk of age. Canadian Journal of Animal Science, 98(4), 801-808. https://doi.org/10.1139/cjas-2017-0132

Leeson, S., & Summers, J. D. (2005). Commercial Poultry Nutrition (3rd Edition). Nottingham University Press.

Macelline, S.P., Toghyani, M., Chrystal, P. V., Selle, P. H., & Liu, S. Y. (2021). Amino acid requirements for laying hens: A comprehensive review. Journal of Poultry Science, 100 (5), Article 101036. https://doi.org/10.1016/j.psj.2021.101036

Mansilla, W. D., Rubio, J. M., Quintero, F. S., Saraswathy, S., & Ruiz, A. I. G. (2022). The effect of gradually decreasing the dietary energy content, at constant or increased lysine:energy ratio on broiler performance, carcass yield, and body composition. Poultry Science, 101(11), Article 102132. https://doi.org/10.1016/j.psj.2022.102132

Marinković, V. 2020. A novel desirability function for multi-response optimization and its application in chemical engineering. Association of the Chemical Engineers of Serbia AchE, 26(3), 309-319. https://doi.org/10.2298/CICEQ190715007M

Mehri, M., Davarpanah, A. A., & Mirzaei, H. R. (2012). Estimation of ideal ratios of methionine and threonine to lysine in starting broiler chicks using response surface methodology. Poultry Science, 91(3), 771–777. https://doi.org/10.3382/ps.2011-01818

Moss, A. F., Parkinson, G., Crowley, T. M., & Pesti, G. M. (2021). Alternatives to formulate laying hen diets beyond the traditional least-cost model. Journal of Applied Poultry Research, 30(1), Article 100137. https://doi.org/10.1016/j.japr.2020.100137

Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response Surface Methodology (4th Edition). John Wiley and Sons, Inc.

Pastore, S. M., Gomes, P. C., Viana, G. S., Silva, E. A., Oliveira, W.P., Barbosa, L. V. S., Fraga, A. Z., & Alves, W. J. (2018). Standardized ileal digestible lysine requirement of white commercial layers in peak egg production. Bioscience Journal, 34(1), 186-193. https://doi.org/10.14393/BJ-v34n1a2018-37205

Pesti, G. M. (1991). Response Surface Approach to Studying the Protein and Energy Requirements of Laying Hens. Poultry Science, 70(1), 103-114. https://doi.org/10.3382/ps.0700103

Pesti, G. M. & Choct, M. (2023). The future of feed formulation for poultry: Toward more sustainable production of meat and eggs. Animal Nutrition, 15, 71-87. https://doi.org/10.1016/j.aninu.2023.02.013

Rein, M. P., Ferreira, N. T., Gous, R. M., & Sakomura, N. K. (2023). Update and evaluation of the egg production model in laying hens. Animal, 17(5), Article 101015. https://doi.org/10.1016/j.animal.2023.101015

Scappaticcio, R., Garcia, J., Fondevila, G., de Juan, A. F., Cámara, L., & Mateos, G. G. (2021). Influence of the energy and digestible lysine contents of the diet on performance and egg quality traits of brown-egg laying hens from 19 to 59 weeks of age. Poultry Science, 100(7), Article 101211. https://doi.org/10.1016/j.psj.2021.101211

Scappaticcio, R., Cámara, L., Herrera, J., Mateos, G. G., de Juan, A. F., & Fondevila, G. (2022). Influence of the energy concentration and the standardized ileal digestible lysine content of the diet on performance and egg quality of brown-egg laying hens from 18 to 41 weeks of age. Poultry Science, 101(12), Article 102197. https://doi.org/10.1016/j.psj.2022.102197

Soares, L., Sakomura, N. K., de Paula Dorigam, J. C., Liebert, F., Sunder, A., do Nascimento, M. Q., & Leme, B. B. (2018). Optimal in-feed amino acid ratio for laying hens based on deletion method. Journal of Animal Physiology and Animal Nutrition, 103(1), 170-181. https://doi.org/10.1111/jpn.13021

Son, J., Yun, Y. S., Kim, H., Hong, E. C., Kang, H. K., & Kim, H. J. (2025). Effect of different levels of tryptophan on laying performance, egg quality, blood and tibia parameters, and feather damage of laying hens in barn system. Journal of Applied Poultry Research, 34(2), Article 100518. https://doi.org/10.1016/j.japr.2025.100518

Spangler, H., Utterback, P., Parsons, C. M., & Tillman, P. (2018). Determining the digestible lysine requirement of 22 to 47-week-old Lohmann laying hens using an increasing protein titration methodology. Poultry Science, 98(4), 1706-1715. https://doi.org/10.3382/ps/pey503

Van Eck, L. M., Enting, H., Carvalhido, I. J., Chen, H., & Kwakkel, R. P. (2023). Lipid metabolism and body composition in long-term producing hens. World’s Poultry Science Journal, 79(2), 243-264. https://doi.org/10.1080/00439339.2023.2189206

Authors

H. Widjaja
hany.widjaja.drh@gmail.com (Primary Contact)
Nahrowi
A. Jayanegara
D. Utomo
K. Hazen
Widjaja, H., Nahrowi, Jayanegara, A., Utomo, D., & Hazen, K. (2025). Optimizing Apparent Metabolizable Energy and Digestible Amino Acids of Layer Feed by Response Surface Methodology. Tropical Animal Science Journal, 48(3), 249-256. https://doi.org/10.5398/tasj.2025.48.3.249

Article Details

How to Cite

Widjaja, H., Nahrowi, Jayanegara, A., Utomo, D., & Hazen, K. (2025). Optimizing Apparent Metabolizable Energy and Digestible Amino Acids of Layer Feed by Response Surface Methodology. Tropical Animal Science Journal, 48(3), 249-256. https://doi.org/10.5398/tasj.2025.48.3.249