A Comprehensive Meta-Analysis of Cassava Addition in a Buffalo Diet: In Vivo Investigations on Performance and Rumen Health
Abstract
This meta-analysis compiles data on buffalo consumption of cassava as a feed ingredient to evaluate its impact on in vivo rumen fermentation, feed intake, nutrient intake, growth performance, digestibility, nitrogen metabolism, haematology, microbiology, and milk yield. A systematic search of Scopus and Web of Science identified 19 in vivo experiments. Cassava varieties were categorized as by-products, foliage, and roots, while buffaloes were stratified based on management system, breed, and sex. A linear mixed model was applied to estimate the effects of cassava inclusion. The findings indicated feed and nutrient intake, particularly crude protein intake and nitrogen retention, increased significantly (p<0.05), while crude protein digestibility showed no significant difference. Microbiological parameters, including total bacterial and fungal counts, also increased significantly (p<0.05), whereas methane production after 24 hours declined significantly (p<0.05). Although production parameters such as body weight, feed conversion, and milk yield were not significantly affected, a trend toward improvement was observed, except for feed conversion. Cassava root and foliage exhibited the highest digestibility and nitrogen retention compared to by-product (p<0.05). A restricted feeding system resulted in higher ammonia (NH3-N) concentrations, protozoa count, and proteolytic and cellulolytic microbial populations compared to ad libitum feeding and an extensive system (p<0.05). Murrah buffaloes showed greater feed intake, while male buffaloes demonstrated higher digestibility (p<0.05). In conclusion, dietary cassava, approximately 1.5% to 20.5% DM, potentially stimulates rumen fermentation, nutrient intake, digestibility, and microbiology but has only a modest effect on production parameters. High cassava inclusion may reduce feed acceptability, thereby decreasing feed efficiency.
Full text article
References
Adli, D. N., Sholikin, M. M., Ujilestari, T., Ahmed, B., Sadiqqua, A., Harahap, M. A., Sofyan, A., & Sugiharto, S. (2024). Effect of fermentation of herbal products on growth performance, breast meat quality, and intestinal morphology of broiler chickens: a meta-analysis. Italian Journal of Animal Science, 23(1), 734-750. https://doi.org/10.1080/1828051X.2024.2351441
Adli, D. N., Sjofjan, O., Sholikin, M. M., Hidayat, C., Utama, D. T., Jayanegara, A., Natsir, M. H., Nuningtyas, Y. F., Pramujo, M., & Puspita, P. S. (2023). The effects of lactic acid bacteria and yeast as probiotics on the performance, blood parameters, nutrient digestibility, and carcase quality of rabbits: A meta-analysis. Italian Journal of Animal Science, 22(1). https://doi.org/10.1080/1828051X.2023.2172467
Bata, M., Sumaryadi, M. Y., Rahayu, S., & Marung, N. (2020). Improving performance of heifer buffalos fed with urea-treated rice straw ensiled with cassava pulp supplemented with concentrates. Animal Production, 22(2), 61-73. https://doi.org/10.20884/1.jap.2020.22.2.48
Bell, V., Guina, J., & Fernandes, T. H. (2023). African fermented foods and beverages potential impact on health. In Microbial Fermentation as a Natural and Designed Process (pp. 293-322). Wiley. https://doi.org/10.1002/9781119850007.ch12
Bhuiyan, M. M., & Iji, P. A. (2015). Energy value of cassava products in broiler chicken diets with or without enzyme supplementation. Asian-Australasian Journal of Animal Sciences, 28(9), 1317-1326. https://doi.org/10.5713/ajas.14.0915
Chanjula, P., Wanapat, M., Wachirapakorn, C., & Rowlinson, P. (2004). Effects of various levels of cassava hay on rumen ecology and digestibility in swamp buffaloes. Asian-Australasian Journal of Animal Sciences, 17(5), 663-669. https://doi.org/10.5713/ajas.2004.663
Chanthakhoun, V., Wanapat, M., Kongmun, P., & Cherdthong, A. (2012). Comparison of ruminal fermentation characteristics and microbial population in swamp buffalo and cattle. Livestock Science, 143(2-3), 172-176. https://doi.org/10.1016/j.livsci.2011.09.009
Chanthakhoun, V., Wanapat, M., Wachirapakorn, C., & Wanapat, S. (2011). Effect of legume (Phaseolus calcaratus) hay supplementation on rumen microorganisms, fermentation and nutrient digestibility in swamp buffalo. Livestock Science, 140(1-3), 17-23. https://doi.org/10.1016/j.livsci.2011.02.003
Cressey, P., & Reeve, J. (2019). Metabolism of cyanogenic glycosides: A review. Food and chemical toxicology, 125, 225-232. https://doi.org/10.1016/j.fct.2019.01.002
Dagaew, G., Cherdthong, A., Wanapat, M., So, S., & Polyorach, S. (2021). Ruminal fermentation, milk production efficiency, and nutrient digestibility of lactating dairy cows receiving fresh cassava root and solid feed-block containing high sulfur. Fermentation, 7(3), 114. https://doi.org/10.3390/fermentation7030114
Falade, K. O., & Akingbala, J. O. (2010). Utilization of cassava for food. Food Reviews International, 27(1), 51-83. https://doi.org/10.1080/87559129.2010.518296
Fanelli, N. S., Torres-Mendoza, L. J., Abelilla, J. J., & Stein, H. H. (2023). Chemical composition of cassava-based feed ingredients from South-East Asia. Animal Bioscience, 36(6), 908-919. https://doi.org/10.5713/ab.22.0360
Felini, R., Cavallini, D., Buonaiuto, G., & Bordin, T. (2024). Assessing the impact of thermoregulatory mineral supplementation on thermal comfort in lactating Holstein cows. Veterinary and Animal Science, 24, 100363. https://doi.org/10.1016/j.vas.2024.100363
Foiklang, S., Wanapat, M., & Toburan, W. (2011). Effects of various plant protein sources in high-quality feed block on feed intake, rumen fermentation, and microbial population in swamp buffalo. Tropical Animal Health and Production, 43(8), 1517-1524. https://doi.org/10.1007/s11250-011-9836-y
Franzolin, R., & Alves, T. C. (2010). The ruminal physiology in buffalo compared with cattle. Revista Veterinaria, 21(1), 104-111.
Granum, G., Wanapat, M., Pakdee, P., Wachirapakorn, C., & Toburan, W. (2007). A comparative study on the effect of cassava hay supplementation in swamp buffaloes (Bubalus bubalis) and cattle (Bos indicus). Asian-Australasian Journal of Animal Sciences, 20(9), 1389-1396. https://doi.org/10.5713/ajas.2007.1389
Greenacre, M., Groenen, P. J. F., Hastie, T., D’Enza, A. I., Markos, A., & Tuzhilina, E. (2022). Principal component analysis. Nature Reviews Methods Primers, 2(1), 100. https://doi.org/10.1038/s43586-022-00184-w
Gundersen, E., Christiansen, A. H. C., Jørgensen, K., & Lübeck, M. (2022). Production of leaf protein concentrates from cassava: Protein distribution and anti-nutritional factors in biorefining fractions. Journal of Cleaner Production, 379, 134730. https://doi.org/10.1016/j.jclepro.2022.134730
Hasanah, U., Sinamo, K. N., Hasnudi, Patriani, P., & Mirwandhono, E. (2020). Feeding evaluation on the production and quality of dairy buffalo milk (Murrah) at the traditional farms in Asam Kumbang. IOP Conference Series: Earth and Environmental Science, 454(1), 012077. https://doi.org/10.1088/1755-1315/454/1/012077
Hong, P., Hao, W., Luo, J., Chen, S., Hu, M., & Zhong, G. (2014). Combination of hot water, Bacillus amyloliquefaciens HF-01 and sodium bicarbonate treatments to control postharvest decay of mandarin fruit. Postharvest Biology and Technology, 88, 96-102. https://doi.org/10.1016/j.postharvbio.2013.10.004
Huang, J., Wu, T., Sun, X., Zou, C., Yang, Y., Cao, Y., Yang, Y., Wasim Iqbal, M., & Lin, B. (2020). Effect of replacing conventional feeds with tropical agricultural by-products on the growth performance, nutrient digestibility and ruminal microbiota of water buffaloes. Journal of Animal Physiology and Animal Nutrition, 104(4), 1034-1042. https://doi.org/10.1111/jpn.13358
Hung, L. V., Wanapat, M., & Cherdthong, A. (2013). Effects of Leucaena leaf pellet on bacterial diversity and microbial protein synthesis in swamp buffalo fed on rice straw. Livestock Science, 151(2-3), 188-197. https://doi.org/10.1016/j.livsci.2012.11.011
Inthapanya, S., & Preston, T. R. (2014). Methane production from urea-treated rice straw is reduced when the protein supplement is cassava leaf meal or fish meal compared with water spinach meal in a rumen in vitro fermentation. Livestock Research for Rural Development, 26(9), 159.
Iqbal, M. W., Zhang, Q., Yang, Y., Zou, C., Li, L., Liang, X., Wei, S., & Lin, B. (2018). Ruminal fermentation and microbial community differently influenced by four typical subtropical forages in vitro. Animal Nutrition, 4(1), 100-108. https://doi.org/10.1016/j.aninu.2017.10.005
Jamil, S. S., & Bujang, A. (2016). Nutrient and antinutrient composition of different variety of cassava (Manihot esculenta crantz) leaves. Journal of Teknologi, 78(6-6). https://doi.org/10.11113/jt.v78.9024
Joomjantha, S., & Wanapat, M. (2008). Effect of supplementation with tropical protein-rich feed resources on rumen ecology, microbial protein synthesis and digestibility in swamp buffaloes. Livestock Research for Rural Development, 20(1).
Kang, S., Wanapat, M., Pakdee, P., Pilajun, R., & Cherdthong, A. (2012). Effects of energy level and Leucaena leucocephala leaf meal as a protein source on rumen fermentation efficiency and digestibility in swamp buffalo. Animal Feed Science and Technology, 174(3-4), 131-139. https://doi.org/10.1016/j.anifeedsci.2012.03.007
Kassambara, A. (2017). Practical guide to principal component methods in R: PCA, M (CA), FAMD, MFA, HCPC, factoextra. STHDA.
Kennedy, A., Brennan, A., Mannion, C., & Sheehan, M. (2021). Suspected cyanide toxicity in cattle associated with ingestion of laurel - A case report. Irish Veterinary Journal, 74(1), 6. https://doi.org/10.1186/s13620-021-00188-0
Khampa, S., Chaowarat, P., Koatdoke, U., Singhaler, R., & Wanapat, M. (2009). Influences of supplementation of cassava hay as anthelmintics on fecal parasitic egg in native cattle grazing on ruzi grass pasture. Pakistan Journal of Nutrition, 8(5), 568-570. https://doi.org/10.3923/pjn.2009.568.570
Khejornsart, P., Wanapat, M., & Rowlinson, P. (2011). Diversity of anaerobic fungi and rumen fermentation characteristic in swamp buffalo and beef cattle fed on different diets. Livestock Science, 139(3), 230-236. https://doi.org/10.1016/j.livsci.2011.01.011
Khy, Y., Wanapat, M., Haitook, T., & Cherdthong, A. (2012). Effect of Leucaena leucocephala pellet (LLP) supplementation on rumen fermentation efficiency and digestibility of nutrients in swamp buffalo. Journal of Animal and Plant Sciences, 22(3), 564-569
Koakoski, D. L., Bordin, T., Cavallini, D., & Buonaiuto, G. (2024). A preliminary study of the effects of gaseous ozone on the microbiological and chemical characteristics of whole-plant corn silage. Fermentation, 10(8), 398. https://doi.org/10.3390/fermentation10080398
Lamanna, M., Muca, E., Buonaiuto, G., Formigoni, A., & Cavallini, D. (2025). From posts to practice: Instagram’s role in veterinary dairy cow nutrition education—How does the audience interact and apply knowledge? A survey study. Journal of Dairy Science, 108(2), 1659–1671. https://doi.org/10.3168/jds.2024-25347
Lunsin, R., Wanapat, M., & Rowlinson, P. (2012). Effect of cassava hay and rice bran oil supplementation on rumen fermentation, milk yield and milk composition in lactating dairy cows. Asian-Australasian Journal of Animal Sciences, 25(10), 1364-1373. https://doi.org/10.5713/ajas.2012.12051
Maeda, M., Zeoula, B. L. M., Cecato, C. U., & do Prado, N. (2007). Nutrient digestibility and ruminal characteristics of buffaloes and bovine fed additive sugar cane silages. Italian Journal of Animal Science, 6(sup2), 437-440. https://doi.org/10.4081/ijas.2007.s2.437
Mang, D. Y., Abdou, A. B., Njintang, N. Y., Djiogue, E. J. M., Loura, B. B., & Mbofung, M. C. (2015). Application of desirability-function and RSM to optimize antioxidant properties of mucuna milk. Journal of Food Measurement and Characterization, 9(4), 495-507. https://doi.org/10.1007/s11694-015-9258-z
Mao, Q., Zhao, X., Kiriyama, A., Negi, S., Fukuda, Y., Yoshioka, H., Kawaguchi, A. T., Motterlini, R., Foresti, R., & Kitagishi, H. (2023). A synthetic porphyrin as an effective dual antidote against carbon monoxide and cyanide poisoning. Proceedings of the National Academy of Sciences, 120(9). https://doi.org/10.1073/pnas.2209924120
Mohd Azmi, A. F., Ahmad, H., Mohd Nor, N., Goh, Y.-M., Zamri-Saad, M., Abu Bakar, M. Z., Salleh, A., Abdullah, P., Jayanegara, A., & Hassim, H. A. (2021). The impact of feed supplementations on Asian buffaloes: A review. Animals, 11(7), 2033. https://doi.org/10.3390/ani11072033
Morgan, N. K., & Choct, M. (2016). Cassava: nutrient composition and nutritive value in poultry diets. Animal Nutrition, 2(4), 253-261. https://doi.org/10.1016/j.aninu.2016.08.010
Moses, R. J., Edo, G. I., Jikah, A. N., Emakpor, O. L., & Agbo, J. J. (2024). Cassava consumption and the risk from cyanide poisoning. Vegetos. https://doi.org/10.1007/s42535-024-01121-w
Njoku, C. N., & Otisi, S. K. (2023). Application of central composite design with design expert v13 in process optimization. In Response Surface Methodology - Research Advances and Applications. IntechOpen. https://doi.org/10.5772/intechopen.109704
National Research Council. (2002). The water buffalo: new prospects for an underutilized animal. Books for Business.
Paengkoum, S., Tatsapong, P., Taethaisong, N., Sorasak, T., Purba, R. A. P., & Paengkoum, P. (2021). Empirical evaluation and prediction of protein requirements for maintenance and growth of 18-24 months old Thai swamp buffaloes. Animals, 11(5), 1405. https://doi.org/10.3390/ani11051405
Palmonari, A., Cavallini, D., Sniffen, C. J., Fernandes, L., Holder, P., Fusaro, I., Giammarco, M., Formigoni, A., & Mammi, L. M. E. (2021). In vitro evaluation of sugar digestibility in molasses. Italian Journal of Animal Science, 20(1), 571-577. https://doi.org/10.1080/1828051X.2021.1899063
Pandya, P. R., Singh, K. M., Parnerkar, S., Tripathi, A. K., Mehta, H. H., Rank, D. N., Kothari, R. K., & Joshi, C. G. (2010). Bacterial diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16s rDNA analysis. Journal of Applied Genetics, 51(3), 395-402. https://doi.org/10.1007/BF03208869
Pertiwi, H., Maharsedyo, N. Y., Amaro, L., & Dadi, T. B. (2019). Nutritional evaluation of cassava (Manihot esculenta) peels as a dietary supplement in tropical Friesian Holstein crossbreed dairy cattle. Veterinary Medicine International, 2019, 1-4. https://doi.org/10.1155/2019/6517839
Pradhan, K. (1994). Rumen ecosystem in relation to cattle and buffalo nutrition. Proceedings of the First Asian Buffalo Association Congress. (pp. 221-242).
R Core Team. (2022). A language and environment for statistical computing. Vienna, Austria. Retrieved from https://www.r-project.org/.
Roza, E., Aritonang, S. N., & Sandra, A. (2015). The hematology of lactating buffalo fed local foliage as feed supplement. Journal of Agricultural Science and Technology A, 5(10). https://doi.org/10.17265/2161-6256/2015.10.007
Roza, E., Aritonang, S. N., Sandra, A., & Rizqan, R. (2021a). Profiles of blood metabolites and milk production of lactating buffalo fed local feed resources in Sijunjung, West Sumatera. Advances in Animal and Veterinary Sciences, 9(6), 527-534. https://doi.org/10.17582/journal.aavs/2021/9.6.856.861
Roza, E., Aritonang, S. N., Yellita, Y., Susanty, H., Rizqan, & Adha, D. A. (2021b). Enhancing performance of Murrah buffalo through improved probiotic feed management in Kapau Village, Agam Regency. IOP Conference Series: Earth and Environmental Science, 888(1), 012008. https://doi.org/10.1088/1755-1315/888/1/012008
Roza, E., Suardi, M. S., Nurdin, E., & Aritonang, S. N. (2013). Digestibility test of cassava leaves in feed supplement on buffaloes by in vitro. Pakistan Journal of Nutrition, 12(5), 505-509. https://doi.org/10.3923/pjn.2013.505.509
Sauvant, D., Schmidely, P., Daudin, J. J., & St-Pierre, N. R. (2008). Meta-analyses of experimental data in animal nutrition. Animal, 2(8), 1203-1214. https://doi.org/10.1017/S1751731108002280.
Sholikin, M. M., Alifian, M. D., Jayanegara, A., & Nahrowi. (2019). Optimization of the Hermetia illucens larvae extraction process with response surface modelling and its amino acid profile and antibacterial activity. In IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/546/6/062030.
Sonobe, T., Akiyama, T., & Pearson, J. T. (2021). Carrier‐mediated serotonin efflux induced by pharmacological anoxia in the rat heart in vivo. Clinical and Experimental Pharmacology and Physiology, 48(12), 1685–1692. https://doi.org/10.1111/1440-1681.13576
Srisaikham, S., Suksombat, W., & Lounglawan, P. (2018). Fresh cassava peel in dairy cattle diet: Effects on milk production, hygienic quality of raw milk and somatic cell counts. Songklanakarin Journal of Science and Technology, 40(4).
Stupak, M., Vanderschuren, H., Gruissem, W., & Zhang, P. (2006). Biotechnological approaches to cassava protein improvement. Trends in Food Science & Technology, 17(12), 634-641. https://doi.org/10.1016/j.tifs.2006.06.004
Suharti, S., Oktafiani, H., Sudarman, A., Baik, M., & Wiryawan, K. G. (2021). Effect of cyanide-degrading bacteria inoculation on performance, rumen fermentation characteristics of sheep fed bitter cassava (Manihot esculenta Crantz) leaf meal. Annals of Agricultural Sciences, 66(2), 131–136. https://doi.org/10.1016/j.aoas.2021.09.001
Supapong, C., & Cherdthong, A. (2020). Effect of sulfur and urea fortification of fresh cassava root in fermented total mixed ration on the improvement milk quality of tropical lactating cows. Veterinary Sciences, 7(3), 98. https://doi.org/10.3390/vetsci7030098
Uriyapongson, S., Srijesadarak, W., Tangkawattana, P., Uriyapongsan, J., & Toburan, W. (2007). Utilization of low-quality broken rice for culled buffalo feed. Italian Journal of Animal Science, 6(2), 528-531. https://doi.org/10.4081/ijas.2007.s2.528
Vastolo, A., Serrapica, F., Cavallini, D., Fusaro, I., Atzori, A. S., & Todaro, M. (2024). Alternative and novel livestock feed: reducing environmental impact. Frontiers in Veterinary Science, 11, 1441905. https://doi.org/10.3389/fvets.2024.1441905
Vinh, N. T., Wanapat, M., Khejornsar, P., & Kongmun, P. (2011). Studies of diversity of rumen microorganisms and fermentation in swamp buffalo fed different diets. Journal of Animal and Veterinary Advances, 10(4), 406-414. https://doi.org/10.3923/javaa.2011.406.414.
Wanapat, M., Petlum, A., & Pimpa, O. (2000a). Supplementation of cassava hay to replace concentrate use in lactating Holstein Friesian crossbreds. Asian-Australasian Journal of Animal Sciences, 13(5), 600-604. https://doi.org/10.5713/ajas.2000.600
Wanapat, M., Puramongkon, T., & Siphuak, W. (2000b). Feeding of cassava hay for lactating dairy cows. Asian-Australasian Journal of Animal Sciences, 13(4), 478-482. https://doi.org/10.5713/ajas.2000.478
Wanapat, M., Pilajun, R., Kang, S., Setyaningsih, K., & Setyawan, A. R. (2012). Effect of ground corn cob replacement for cassava chip on feed intake, rumen fermentation and urinary derivatives in swamp buffaloes. Asian-Australasian Journal of Animal Sciences, 25(8), 1124-1131. https://doi.org/10.5713/ajas.2012.12109
Wanapat, M., Pilajun, R., Polyorach, S., Cherdthong, A., Khejornsart, P., & Rowlinson, P. (2013). Effect of carbohydrate source and cottonseed meal level in the concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in swamp buffaloes. Asian-Australasian Journal of Animal Sciences, 26(7), 952-960. https://doi.org/10.5713/ajas.2013.13032
Wang, Y., & McAllister, T. A. (2002). Rumen microbes, enzymes, and feed digestion - A review. Asian-Australasian Journal of Animal Sciences, 15(11), 1659-1676. https://doi.org/10.5713/ajas.2002.1659
Authors
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.