Adding Multiple Enzymes to Diets Containing Wheat Distillers Dried Grains with Solubles Improves Broiler Performance by Reducing Viscosity

B. Gouran(1) , K. J. Khorshidi(2) , S. Gharahveysi(3)
(1) Department of Animal Science, Ghaemshahr Branch, Islamic Azad University,
(2) Department of Animal Science, Ghaemshahr Branch, Islamic Azad University,
(3) Department of Animal Science, Ghaemshahr Branch, Islamic Azad University

Abstract

This study aimed to investigate the effects of adding the multienzyme Apsazyme (glucanase, xylanase, galactosidase, mannanase) to diets containing different levels of wheat distiller’s dried grains with solubles (WDDGS) on performance, ileal bacteria, intestinal viscosity, pH, and blood variables of broiler chickens. For this purpose, 300 one-day-old male and female broilers of the Ross 308 strain were used. The experimental diets included three levels of WDDGS (0%, 10%, and 20%) with and without multienzyme (125 g/ton). Data analysis was done using SAS statistical software as a factorial design. The use of 20% WDDGS reduced feed intake (FI) in the finisher period and total period compared to the control treatment (p<0.05). The use of 20% WDDGS level reduced body weight gain (BWG) compared to 10% WDDGS treatment (p<0.05). The feed conversion ratio (FCR) was significantly reduced in birds fed with 125 g/ton of multienzyme diet (p<0.05). The number of aerobes bacteria and coliform was higher in broiler chickens fed with 10% and 20% WDDGS diet compared to the control treatment (p<0.05). Also, the use of multienzyme increased the number of lactic acid bacteria in the ileum. Multienzyme supplementation significantly reduced the increase in intestinal viscosity and pH caused by the 20% WDDGS level (p<0.05). Using 20% WDDGS in the diet increased the serum albumin concentration compared to 10% and 0% WDDGS (p<0.05). Finally, it can be concluded that the use of multienzymes compensates for the negative effects of diets containing 20% ​​WDDGS on performance by reducing intestinal viscosity and modulating the gut microbial population. Therefore, it is recommended to add a multienzyme to the diet when using a 20% WDDGS level.

Full text article

Generated from XML file

References

Adebiyi, A. O., & Olukosi, O. A. (2015). Metabolizable energy content of wheat distillers’ dried grains with solubles supplemented with or without a mixture of carbohydrases and protease for broilers and turkeys. Poultry Science, 94(6), 1270-1276. https://doi.org/10.3382/ps/pev089

Adedokun, S. A., & Olojede, O. C. (2019). Optimizing gastrointestinal integrity in poultry: the role of nutrients and feed additives. Frontiers in Veterinary Science, 5, 348. https://doi.org/10.3389/fvets.2018.00348

Aderibigbe, A. S., Park, C. S., Johnson, T., Velayudhan, D. E., Vinyeta, E., & Adeola, O. (2024). Efficacy of a novel multi-enzyme feed additive on growth performance, nutrient digestibility, and gut microbiome of weanling pigs fed corn–wheat or wheat–barley-based diet. Journal of Animal Science, 102(64), 324-336. https://doi.org/10.1093/jas/skae064

Aftab, U., & Bedford, M. R. (2018). The use of NSP enzymes in poultry nutrition: myths and realities. World’s Poultry Science Journal, 74(2), 277-286. https://doi.org/10.1017/S0043933918000272

Alagawany, M., Elnesr, S. S., & Farag, M. R. (2018). The role of exogenous enzymes in promoting growth and improving nutrient digestibility in poultry. Iranian journal of veterinary research, 19(3), 157-169. https://doi.org/10.22099/ijvr.2018.4932

Anderson, A. G., Bedford, M. R., & Parsons, C. M. (2023). Effects of adaptation diet and exogenous enzymes on true metabolizable energy and cecal microbial ecology, short-chain fatty acid profile, and enzyme activity in roosters fed barley and rye diets. Poultry science, 102(7), 102768. https://doi.org/10.1016/j.psj.2023.102768

Anwar, U., Riaz, M., Farooq Khalid, M., Mustafa, R., Farooq, U., Ashraf, M., Munir, H., Auon, M., Hussain, M., Hussain, M., Ayaz Chisti, M. F., Bilal, M. Q., Rehman, A. u., & Rahman, M. A. u. (2023). Impact of exogenous xylanase and phytase, individually or in combination, on performance, digesta viscosity and carcass characteristics in broiler birds fed wheat-based diets. Animals, 13(2), 278. https://doi.org/10.3390/ani13020278

Arczewska-Wlosek, A., Swiatkiewicz, S., Bederska-Lojewska, D., Orczewska-Dudek, S., Szczurek, W., Boros, D., Fras, A., Tomaszewska, E., Dobrowolski, P., Muszynski, S., Kwiecien, M., & Schwarz, T. (2019). The efficiency of xylanase in broiler chickens fed with increasing dietary levels of rye. Animals, 9(2), 46. https://doi.org/10.3390/ani9020046

Awad, W., Ghareeb, K., & Böhm, J. (2018). Intestinal structure and function of broiler chickens on diets supplemented with a synbiotic containing Enterococcus faecium and oligosaccharides. International Journal of Molecular Sciences, 9(11), 2205-2216. https://doi.org/10.3390/ijms9112205

Ayres, V. E., Broomhead, J. N., Li, X., Raab, R. M., & Moritz, J. S. (2019). Viscosity and growth response of broilers fed high fiber diets supplemented with a corn-produced recombinant carbohydrase. Journal of Applied Poultry Research, 28(4), 826-836. https://doi.org/10.3382/japr/pfz039

Barasch, I. B., & Grimes, J. L. (2021). The effect of a heat-stable xylanase on digesta viscosity, apparent metabolizable energy and growth performance of broiler chicks fed a wheat-based diet. Poultry Science, 100(9), 101275. https://doi.org/10.1016/j.psj.2021.101275

Bederska-ºojewska, D., Swiatkiewicz, A., & Schwarz, T. (2017). Rye non-starch polysaccharides: their impact on poultry intestinal physiology, nutrients digestibility and performance indices-a review. Annals of Animal Science, 17, 351–369. https://doi.org/10.1515/aoas-2016-0090

Bozkurt, M., Aysul, N., Küçükyilmaz, K., Aypak, S., Ege, G., Catli, A.U., Akşit, H., Çöven, F., Seyrek, K., & Çınar, M. (2014). Efficacy of in-feed preparations of an anticoccidial, multienzyme, prebiotic, probiotic, and herbal essential oil mixture in healthy and Eimeria spp.-infected broilers. Poultry Science, 93(2), 389-399. https://doi.org/10.3382/ps.2013-03368

Dal Pont, G. C., Eyng, C., Bortoluzzi, C., & Kogut, M. H. (2020). Enzymes and gut health in monogastric animals: effects beyond digestibility. Animal Production Research, 13, 33-55. https://doi.org/10.1007/978-3-030-90303-9_3

Dal Pont, G. C., Lee, A., Bortoluzzi, C., Junior, N. R., Farnell, Y. Z., Pilla, R., & Kogut, M. H. (2023). Distillers dried grains with soluble and enzyme inclusion in the diet effects broilers performance, intestinal health, and microbiota composition. Poultry Science, 102(11), 102981. https://doi.org/10.1016/j.psj.2023.102981

Daymeh, S., Afzali, N., & Bashtini, M. (2016). Effect of revabio in diets containing wheat bran on growth performance, some blood metabolites and absorbing of mineral elements in broilers chickens. Animal Production Research, 7, 33-44 https://doi.org/10.29252/rap.7.14.43

Dinani, O. P., Tyagi, P. K., Mir, N. A., Mandal, A. B., Tyagi, P. K., Tiwari, S. P. & Giri, A. K. (2019). Effect of feeding rice distillers dried grains with solubles and rice gluten meal with or without enzyme supplementation on the haematology and serum biochemistry of broiler chickens. International Journal of Life Sciences Research, 9(1), 254-261. https://doi.org/10.14202/vetworld.2018.1592-1596

Gao, Y., Liu, Y., Sun, M., Zhang, H., Mu, G., & Tuo, Y. (2020). Physiological function analysis of Lactobacillus plantarum Y44 based on genotypic and phenotypic characteristics. Journal of Dairy Science, 103(7), 5916-5930. https://doi.org/10.3168/jds.2019-18047

Gao, Q., Wang, Y., Li, J., Bai, G., Liu, L., Zhong, R., Ma, T., Pan, H., & Zhang, H. (2022). Supplementation of multi-enzymes alone or combined with inactivated Lactobacillus benefits growth performance and gut microbiota in broilers fed wheat diets. Frontiers in microbiology, 13, 927932. https://doi.org/10.3389/fmicb.2022.927932

Ghayour-Najafabadi, P., Khosravinia, H., Gheisari, A., Azarfar, A., & Khanahmadi, M. (2018). Productive performance, nutrient digestibility and intestinal morphometry in broiler chickens fed corn or wheat-based diets supplemented with bacterial-or fungal-originated xylanase. Italian Journal of Animal Science, 17(1), 165-174. https://doi.org/10.1080/1828051X.2017.1328990

Giannenas, I., Bonos, E., Skoufos, I., Tzora, A., Stylianaki, I., Lazari, D., Tsinas, A., Christaki, E., & Florou-Paneri, P. (2018). Effect of herbal feed additives on performance parameters, intestinal microbiota, intestinal morphology and meat lipid oxidation of broiler chickens. British Poultry Science, 59(5), 545-553.https://doi.org/10.1080/00071668.2018.1483577

González-Ortiz, G., Olukosi, O. A., Jurgens, G., Apajalahti, J., & Bedford, M. R. (2020). Short-chain fatty acids and ceca microbiota profiles in broilers and turkeys in response to diets supplemented with phytase at varying concentrations, with or without xylanase. Poultry Science, 99(4), 2068-2077. https://doi.org/10.1016/j.psj.2019.11.051

Guan, D., Wang, Z., Han, H., Sun, H., Li, Y., Wan, W., & Wang, J. (2021). Effects of nonstarch polysaccharide hydrolase of plant protein‐based diets on growth, nutrient digestibility, and protease/amylase activities of Yellow River carp, Cyprinus carpio. Journal of the World Aquaculture Society, 52(4), 805-819. https://doi.org/10.1111/jwas.12751

Gupta, S. L., Tyagi, P. K., Praveen, K., Mandal, A. B., Dinani, O. P., & Rokade, J. J. (2017). Feeding effect of rice based dry distillers grains with soluble on hemato-biochemical and egg sensory attributes during 45th to 54th week of laying. International Journal of Pure and Applied Bioscience, 5(6), 1521-1527. https://doi.org/10.18782/2320-7051.5890

Itani, K., Ahmad, M., Ghimire, S., Schüller, R. B., Apajalahti, J., Smith, A., & Svihus, B. (2025). Interaction between feeding regimen, NSPase enzyme and extent of grinding of barley-based pelleted diets on the performance, nutrient digestibility and ileal microbiota of broiler chickens. British Poultry Science, 1-12. https://doi.org/10.1080/00071668.2025.2451245

Jabbar, A., Tahir, M., Alhidary, I. A., Abdelrahman, M. A., Albadani, H., Khan, R. U., & Tufarelli, V. (2021). Impact of microbial protease enzyme and dietary crude protein levels on growth and nutrients digestibility in broilers over 15–28 days. Animals, 11(9), 2499. https://doi.org/10.3390/ani11092499

Jang, J. C., Zeng, Z., Urriola, P. E. & Shurson, G. C. (2022). A systematic review and meta-analysis of the growth performance effects of feeding diets containing corn distillers dried grains with solubles (cDDGS) and feed enzymes to broiler chickens Running head. Animal Feed Science and Technology, 19(4), 115464. https://doi.org/10.1016/j.anifeedsci.2022.115464

Jozefiak, D., Rutkowski, A., & Martin, S. A. (2004). Carbohydrate fermentation in the avian ceca: a review. Animal Feed Science and Technology, 113, 1–15. https://doi.org/10.1016/j.anifeedsci.2003.09.007

Kaab, H., Bain, M. M., & Eckersall, P. D. (2018). Acute phase proteins and stress markers in the immediate response to a combined vaccination against newcastle disease and infectious bronchitis viruses in specific pathogen free (SPF) layer chicks. Poultry Science, 97, 463–469. https://doi.org/10.3382/ps/pex340

Khose, K. K., Manwar, S. J., Dhore, R. N., Joshi, M. V., & Gole, M. A. (2020). Inclusion of sorghum distillers dried grains with solubles and multi-enzyme supplementation on immune response and nutrient utilization in broilers. Journal of Entomology and Zoology Studies, 8(2), 1505-1509.

Kiarie, E., Romero, L. F., & Ravindran, V. J. P. S. (2014). Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poultry Science, 93(5), 1186-1196. https://doi.org/10.3382/ps.2013-03715

Kim, D. Y., Kim, K. H., Lee, E. C., Oh, J. K., Park, M. A., & Kil, D. Y. (2024). Effect of dietary supplementation of xylanase alone or combination of xylanase and β-glucanase on growth performance, meat quality, intestinal measurements, and nutrient utilization in broiler chickens. Animal Bioscience, 38(2), 325-340.https://doi.org/10.5713/ab.24.0430

Kim, J. H., Park, G. H., Han, G. P. & Kil, D. Y. (2021). Effect of feeding corn distillers dried grains with solubles naturally contaminated with deoxynivalenol on growth performance, meat quality, intestinal permeability, and utilization of energy and nutrients in broiler chickens. Poultry Science, 100(8), 101215. https://doi.org/10.1016/j.psj.2021.101215

Kouzounis, D., Hageman, J. A., Soares, N., Michiels, J. & Schols, H. A. (2021). Impact of xylanase and glucanase on oligosaccharide formation, carbohydrate fermentation patterns, and nutrient utilization in the gastrointestinal tract of broilers. Animals, 11(5),1285. https://doi.org/10.3390/ani11051285

Kumar, R., Thakur, S. S., & Mahesh, M. S. (2016). Rice gluten meal as an alternative by product feed for growing dairy calves. Tropical Animal Health and Production, 48(3), 619-624. https://doi.org/10.1007/s11250-016-1007-8

Maciel, R. M., Lopes, S. T. A., Santurio, J. M., Rosa, P., Duarte, M., Martins, D. B., & Emanuelli, M. P. (2007). Electrophoretic profile of serum proteins in broilers fed with diets containing aflatoxins and/or natural clinoptilolite clay. Ciência Rural, 37, 744–749. https://doi.org/10.1590/S0103-84782007000300022

Malekzadeh, M., & Shakouri, M. D. (2016). The effect of four barley cultivars in whole and ground forms on performance, nutrients digestibility and blood lipid parameters of broiler chickens. Research on Animal Production, 7(13), 48-40. https://doi.org/10.18869/acadpub.rap.7.13.48

Mazanko, M. S., Popov, I. V., Prazdnova, E. V., Refeld, A. G., Bren, A. B., Zelenkova, G. A., Chistyakov, V. A., Algburi, A., Weeks, R. M., Ermakov, A. M., & Chikindas, M. L. (2022). Beneficial effects of spore-forming Bacillus probiotic bacteria isolated from poultry microbiota on broilers’ health, growth performance, and immune system. Frontiers in Veterinary Science, 9, 877360. https://doi.org/10.3389/fvets.2022.877360

Michels, D., Verkempinck, S. H. E., Vermeulen, K., Spaepen, R., Burton, E., Scholey, D., Wealleans, A. L., & Grauwet, T. (2025). An innovative approach to emulsifier use in broiler feed affects nutrient digestion and growth performance in young broilers. British Poultry Science, 1-11. https://doi.org/10.1080/00071668.2024.2440874

Minafra, C. S., Marques, S., Stringhini, J. H., Ulhoa, C. J., Rezende, C., Santos, F., & Moraes, G. (2015). Biochemical serum profile of broiler chickens fed diets supplemented with alfa-amylase from Cryptococcus flavus and Aspergillus niger HM2003. Revista Brasileira de Zootecnia, 39, 2691–2696. https://doi.org/10.1590/S1516-35982010001200020

Mingan, C. (2010). Alternative to in-feed antibiotics in monogastric animal industry. ASA Technical bulletin Vol. AN30.

Monteagudo-Mera, A., Chatzifragkou, A., Kosik, O., Gibson, G., Lovegrove, A., Shewry, P. R., & Charalampopoulos, D. (2018). Evaluation of the prebiotic potential of arabinoxylans extracted from wheat distillers’ dried grains with solubles (DDGS) and in-process samples. Applied Microbiology and Biotechnology, 102, 7577-7587. https://doi.org/10.1007/s00253-018-9171-6

Morgan, N. K., Keerqin, C., Wallace, A., Wu, S. B. & Choct, M. (2019). Effect of arabinoxylo-oligosaccharides and arabinoxylans on net energy and nutrient utilization in broilers. Animal Nutrition, 5, 56–62. https://doi.org/10.1016/j.aninu.2018.05.001

Morgan, N., Bhuiyan, M. M., & Hopcroft, R. (2022). Non-starch polysaccharide degradation in the gastrointestinal tract of broiler chickens fed commercial-type diets supplemented with either a single dose of xylanase, a double dose of xylanase, or a cocktail of non-starch polysaccharide-degrading enzymes. Poultry Science, 101(6), 101846. https://doi.org/10.1016/j.psj.2022.101846

Munyaka, P. M., Nandha, N. K., Kiarie, E., Nyachoti, C. M. & Khafipour, E. (2016). Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poultry Science, 95(3), 528-540. https://doi.org/10.3382/ps/pev333

Nguyen, H. T., Wu, S. B., Bedford, M. R., Nguyen, X. H., & Morgan, N. K. (2022). Dietary soluble non-starch polysaccharide level and xylanase influence the gastrointestinal environment and nutrient utilisation in laying hens. British Poultry Science, 63(3), 340-350. https://doi.org/10.1080/00071668.2021.2003754

Pang, Y., & Applegate, T. J. (2007). Effects of dietary copper supplementation and copper source on digesta pH, calcium, zinc, and copper complex size in the gastrointestinal tract of the broiler chicken. Poultry Science, 86(3), 531-7. https://doi.org/10.1093/ps/86.3.531

Polovinski-Horvatović, M. (2021). A mini review of the effects of NSP and exogenous enzymes in broiler diets on digestibility and some intestinal functions. Contemp. Agric, 70(3-4), 116-122. https://doi.org/10.2478/contagri-2021-0017

Pyzik, E., Urban-Chmiel, R., Chałabis-Mazurek, A., Świątkiewicz, S., Arczewska-Włosek, A., Schwarz, T., & Piedra, J. L. V. (2021). The influence of a diet supplemented with 20% rye and xylanase in different housing systems on the occurrence of pathogenic bacteria in broiler chickens. Annals of Animal Science, 21(4), 1455-1473. https://doi.org/10.3390/vetsci9120683

Rochell, S. J. (2018). Formulation of broiler chicken feeds using distillers dried grains with solubles. Fermentation, 4, 64-81. https://doi.org/10.3390/fermentation4030064

Sadati, M. M., Rezaeipour, V., & Abdullahpour, R. (2022). Efficacy of whole wheat grain in combination with acidified drinking water on growth performance, gizzard development, intestinal morphology, and microbial population of broiler chickens. Livestock Science, 259, 104911. https://doi.org/10.1016/j.livsci.2022.104911

SAS, (2009). STAT User’s Guide, Version 9.2. SAS Inst. Inc.

Schmidt, E., Locatelli-Dittrich, R., Santin, E., & Paulillo, A. C. (2007). Clinical pathology in poultry – A tool to improve poultry health – a review. Archives of Veterinary Science, 12, 9–20. https://doi.org/10.5380/avs.v12i3.10906

Simic, A., González-Ortiz, G., Mansbridge, S. C., Rose, S. P., Bedford, M. R., Yovchev, D., & Pirgozliev, V. R. (2023). Broiler chicken response to xylanase and fermentable xylooligosaccharide supplementation. Poultry Science, 102(11), 103000. https://doi.org/10.1016/j.psj.2023.103000

Smeets, N., Nuyens, F., Van Campenhout, L., Delezie, E., & Niewold, T. A. (2018). Interactions between the concentration of non-starch polysaccharides in wheat and the addition of an enzyme mixture in a broiler digestibility and performance trial. Poultry Science, 97(6), 2064-2070. https://doi.org/10.3382/ps/pey038

Smits, C. H., Veldman, A., Verstegen, M. W., & Beynen, A. C. (1997). Dietary carboxymethylcellulose with high instead of low viscosity reduces macronutrient digestion in broiler chickens. The Journal of Nutrition, 127(3), 483-487. https://doi.org/10.1093/jn/127.3.483

Sozcu, A. (2019). Growth performance, pH value of gizzard, hepatic enzyme activity, immunologic indicators, intestinal histomorphology, and cecal microflora of broilers fed diets supplemented with processed lignocellulose. Poultry science, 98(12), 6880-6887. https://doi.org/10.3382/ps/pez449

Swiatkiewicz, S., & Koreleski, J. (2008). The use of distillers dried grains with solubles (DDGS) in poultry nutrition. World’s Poultry Science Journal, 64(2), 257-266. https://doi.org/10.1017/S0043933908000044

Swiatkiewicz, S., Arczewska-Wlosek, A., & Jozefiak, D. (2014). Feed enzymes, probiotic, or chitosan can improve the nutritional efficacy of broiler chicken diets containing a high level of distillers dried grains with solubles. Livestock Science, 163, 110-119. https://doi.org/10.1016/j.livsci.2014.03.001

Swiatkiewicz, S., Swiatkiewicz, M., Arczewska‐Wlosek, A., & Jozefiak, D. (2016). Efficacy of feed enzymes in pig and poultry diets containing distillers dried grains with solubles: a review. Journal of Animal Physiology and Animal Nutrition, 100(1), 15-26. https://doi.org/10.1111/jpn.12351

Tellez, G., Latorre, J. D., Kuttappan, V. A., Hargis, B. M., & Hernandez-Velasco, X. (2015). Rye affects bacterial translocation, intestinal viscosity, microbiota composition and bone mineralization in turkey poults. PLoS ONE, 10, e0122390. https://doi.org/10.1371/journal.pone.0122390

Van Hoeck, V., Papadopoulos, G. A., Giannenas, I., Lioliopoulou, S., Tsiouris, V., Mantzios, T., Kiskinis, K., Grivas, I., Gonzalez Sanchez, A. L., Vasanthakumari, B. L., Fortomaris, P., & Morisset, D. (2021). New intrinsically thermostable xylanase improves broilers’ growth performance, organ weights, and affects intestinal viscosity and pH. Agriculture, 11(12), 1235. https://doi.org/10.3390/agriculture11121235

Vandeplas, S., Dauphin, R. D., Thonart, P., Thewis, A., & Beckers, Y. (2010). Effect of the bacterial or fungal origin of exogenous xylanases supplemented to a wheat-based diet on performance of broiler chickens and nutrient digestibility of the diet. Canadian Journal of Animal Science, 90(2), 221-8. https://doi.org/10.4141/CJAS09067

Vohra, A., Syal, P., & Madan, A. (2016). Probiotic yeasts in livestock sector. Animal Feed Science and Technology, 219:31–47. https://doi.org/10.1016/j.anifeedsci.2016.05.019

Wang, J., Cao, H., Bao, C., Liu, Y., Dong, B., Wang, C., Shang, Z., Cao, Y., & Liu, S. (2021). Effects of xylanase in corn-or wheat-based diets on cecal microbiota of broilers. Frontiers in Microbiology, 12, 757066. https://doi.org/10.3389/fmicb.2021.757066

Wani, M. A., Tyagi Pramod, K., Tyagi Praveen, K., Sheikh, S. A., Dinani, O. P., Hazarika, R., Bhanja, S. K., & Mandal, A. B. (2017). Effect of rice gluten meal as protein source in the diet of broiler chicken on immunity, gut microbial count, haematology and serum biochemical parameters. Indian Journal of Poultry Science, 52(3), 277-282. https://doi.org/10.5958/0974-8180.2017.00053.8

Whiting, I. M., Pirgozliev, V., Rose, S. P., Wilson, J., Amerah, A. M., Ivanova, S. G., Staykova, G. P., Oluwatosin, O. O., & Oso, A. O. (2017). Nutrient availability of different batches of wheat distillers dried grains with solubles with and without exogenous enzymes for broiler chickens. Poultry Science, 96(3), 574-580. https://doi.org/10.3382/ps/pew262

Whiting, I., Pirgozliev, V., Rose, S. P., Karadas, F., Mirza, M. W., & Sharpe, A. (2018). The temperature of storage of a batch of wheat distillers dried grains eith solubles sampeles on their nutritive value for broilers. British Poultry Science, 59(1), 76-80. https://doi.org/10.1080/00071668.2017.1380297

Youngji, R., Kiarie, E., & Lange, F. M. (2018). Nutritive value of corn distillers dried grains with solubles steeped without or with exogenous feed enzyme for 24h and fed to growing pigs. Journal of Animal Science, 96(4), 2352- 2360. https://doi.org/10.1093/jas/sky115

Zhou, Y., Jiang, Z., Lv, D., & Wang, T. (2009). Improved energy-utilizing efficiency by enzyme preparation supplement in broiler diets with different metabolizable energy levels. Poultry Science, 88(2), 316-322.https://doi.org/10.3382/ps.2008-00231

Authors

B. Gouran
K. J. Khorshidi
Kaveh.Khorshidi@gmail.com (Primary Contact)
S. Gharahveysi
Gouran, B., Khorshidi, K. J., & Gharahveysi, S. (2025). Adding Multiple Enzymes to Diets Containing Wheat Distillers Dried Grains with Solubles Improves Broiler Performance by Reducing Viscosity. Tropical Animal Science Journal, 48(3), 267-278. https://doi.org/10.5398/tasj.2025.48.3.267

Article Details

How to Cite

Gouran, B., Khorshidi, K. J., & Gharahveysi, S. (2025). Adding Multiple Enzymes to Diets Containing Wheat Distillers Dried Grains with Solubles Improves Broiler Performance by Reducing Viscosity. Tropical Animal Science Journal, 48(3), 267-278. https://doi.org/10.5398/tasj.2025.48.3.267

List of Cited By :

Crossref logo