Calcareous Algae (Lithothamnium calcareum) as an Alternative Source of Calcium in Commercial Layer Diets

L. R. Ávila(1) , F. K. Cruz(2) , B. K. V. Leite(3) , E. R. M. Garcia(4)
(1) Postgraduate Program in Animal Science, State University of Mato Grosso do Sul (UEMS),
(2) Postgraduate Program in Animal Science, State University of Mato Grosso do Sul (UEMS),
(3) Postgraduate Program in Animal Science, State University of Mato Grosso do Sul (UEMS),
(4) Postgraduate Program in Animal Science, State University of Mato Grosso do Sul (UEMS)

Abstract

Calcareous algae (CA) are an alternative renewable source of organic minerals that are used in poultry feed. However, the optimal CA concentration that can be included in poultry diets and its effect on egg production requires further investigation. The aim of this study was to determine the effects of diets containing varying CA (Lithothamnium calcareum) levels and particle sizes on the performance, mineral balance, quality, and composition of the eggs of commercial laying hens. A completely randomized experimental design with a 3 × 2 factorial arrangement (CA level × particle size) was employed in this study. A total of 210 Dekalb White laying hens were distributed to the following experimental units, with six birds each and five replicates per unit: the control (diet without CA addition) and treatment groups, which were fed with diets containing varying CA levels (1%, 2%, and 3%) and particle sizes (0.128 and 1.114 mm). Productive performance, external egg quality, and percentage of non-viable eggs were not affected by the inclusion of CA in the diets. The inclusion of 2% fine-particle CA reduced (p<0.05) calcium excretion (%) and, consequently, improved calcium retention. Similarly, the inclusion of 2% fine-particle CA decreased phosphorus excretion (p<0.05). The inclusion of 2% and 3% fine-particle CA increased mineral matter retention (p<0.05). Therefore, the inclusion of CA in the diets of lightweight laying hens did not affect productive variables or egg quality. However, 2% fine-particle CA reduced calcium and phosphorus excretion, thereby improving the retention of these minerals.

Full text article

Generated from XML file

References

Badeca, R. dos S., Valentim, J. K., Garcia, R. G., Eberhart, B. de S., Serpa, F. C., Pereira, I. D. B., Felix, G. A., Burbarelli, M. F. D. C., Komiyama, C. M., Correa, E. B., & Fernandes, A. R. M. (2022). Lithothamnium calcareum in the diet of Japanese quails improves the external quality of eggs. Bulgarian Journal of Agricultural Science, 28(3), 494–501.

Bairros, E. C., Souza, G. C. de, Rocha, B. de J. da, Leite, B. K. V., & Garcia, E. R. de M. (2024). Qualidade de ovos de codornas comercializados em diferentes estabelecimentos comerciais durante o inverno e o verão. Arquivos de Ciências Veterinárias e Zoologia Da UNIPAR, 27(1), 23–37. https://doi.org/10.25110/arqvet.v27i1.2024-11353

Carlos, A. C., Sakomura, N. K., Regina, S., Pinheiro, F., Marcelo, F., Toledano, M., Giacometti, R., Walter Da, J., & Júnior, S. (2011). Use of algae Lithothamnium calcareum as alternative source of calcium in diets for broiler chickens. Ciência e Agrotecnologia, 35(4), 833-839. https://doi.org/10.1590/S1413-70542011000400025

Carrillo, S., López, E., Casas, M. M., Avila, E., Castillo, R. M., Carranco, M. E., Calvo, C., & Pérez-Gil, F. (2008). Potential use of seaweeds in the laying hen ration to improve the quality of n-3 fatty acid enriched eggs. Journal of Applied Phycology, 20(5), 721–728. https://doi.org/10.1007/s10811-008-9334-4

Diana, T. F., Calderano, A. A., Rostagno, H. S., Marques, M. R. de L., Tavernari, F. de C., Veroneze, R., & Albino, L. F. T. (2023). Apparent calcium retention and digestibility coefficients of limestone with different particle sizes in laying hens. Scientia Agricola, 80. https://doi.org/10.1590/1678-992x-2021-0258

Dias, G. T. M. (2000). Granulados bioclásticos - algas calcárias. Brazilian Journal of Geophysics, 18(3). https://doi.org/10.1590/S0102-261X2000000300008

DSM. (2016). Egg yolk pigmentation guidelines. Retrieved May 4, 2024 from https://www.dsm.com/anh/news/downloads/infographics-checklists-and-guides/eggyolk-pigmentation-guidelines-2022.html

Ege, G., Bozkurt, M., Koçer, B., Tüzün, A. E., Uygun, M., & Alkan, G. (2019). Influence of feed particle size and feed form on productive performance, egg quality, gastrointestinal tract traits, digestive enzymes, intestinal morphology, and nutrient digestibility of laying hens reared in enriched cages. Poultry Science, 98(9), 3787–3801. https://doi.org/10.3382/ps/pez082

Fan, G. J., Shih, B. L., Lin, H. C., Lee, T. T., Lee, C. F., & Lin, Y. F. (2021). Effect of dietary supplementation of Sargassum meal on laying performance and egg quality of Leghorn layers. Animal Bioscience, 34(3), 449–456. https://doi.org/10.5713/ajas.20.0256

Gautron, J., Dombre, C., Nau, F., Feidt, C., & Guillier, L. (2022). Review: Production factors affecting the quality of chicken table eggs and egg products in Europe. Animal, 16. https://doi.org/10.1016/j.animal.2021.100425

Hamilton, R. M. G. (1982). Methods and factors that affect the measurement of egg shell quality. Poultry Science, 61, 2022–2039. https://doi.org/10.3382/ps.0612022

Hervo, F., Narcy, A., Nys, Y., & Létourneau-Montminy, M. P. (2022). Effect of limestone particle size on performance, eggshell quality, bone strength, and in vitro/in vivo solubility in laying hens: a meta-analysis approach. Poultry Science, 101(4). https://doi.org/10.1016/j.psj.2021.101686

Kulshreshtha, G., Rathgeber, B., Stratton, G., Thomas, N., Evans, F., Critchley, A., Hafting, J., & Prithiviraj, B. (2014). Immunology, health, and disease: Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality, and gut microbiota of layer hens. Poultry Science, 93(12), 2991–3001. https://doi.org/10.3382/ps.2014-04200

Manangi, M. K., Maharjan, P., & Coon, C. N. (2018). Calcium particle size effects on plasma, excreta, and urinary Ca and P changes in broiler breeder hens. Poultry Science, 97(8), 2798–2806. https://doi.org/10.3382/ps/pey043

Melo, T. V, Ferreira, R. A., Oliveira, V. C., Carneiro, J. B. A., Moura, A. M. A., Silva, C. S., & Nery, V. L. H. (2008). Calidad del huevo de codornices utilizando harina de algas marinas y fosfato monoamónico. Archivos de Zootecnia, 57(219), 28–34.

Melo, T. V, & Moura, A. M. A. (2009). Utilização da farinha de algas calcáreas na alimentação animal use of seawed flour in the animal feeding. Archivos de Zootecnia, 58, 99–107. https://doi.org/10.21071/az.v58i224.5076

Moraleco, D. D., Almeida, A. A. de, Valentim, J. K., Morais, M. V. M., Brasil, C. P. A., Arruda, D. R. F. de, Lira, G. R., Araújo, D. S., Pinheiro, S. R. F., & Lima, H. J. D. (2024). Alga marinha calcária na dieta de poedeiras semipesadas nas fases de recria e pré-postura. Ciência Animal Brasileira, 25. https://doi.org/10.1590/1809-6891v25e-77723p

Murata, L. S., Ariki, J., Santana, A. P., De Moraes, R., & Jardim Filho, R. de M. (2009). Níveis de cálcio e granulometria do calcário sobre o desempenho e a qualidade da casca de ovos de poedeiras comerciais. Revista Biotemas, 22(1), 103–110. https://doi.org/10.5007/2175-7925.2009v22n1p103

Oliveira, A. G. de, Furtado, D. A., Ribeiro, N. L., Marques, J. I., Leite, P. G., Mascarenhas, N. M. H., Silva, R. de S., Dornelas, K. C., Rodrigues, R. C. M., Brito, A. N. dos S. L. de, Lima, V. R. do N., & Chiodi, J. E. (2023). Marine macroalgae as an alternative in the feeding of broiler quails in an environment of thermal stress. Food Science and Technology, 43. https://doi.org/10.5327/fst.116122

Perali, C., Magnoli, A. P., Aronovich, M., Rosa, C. A. D. R., & Cavaglieri, L. R. (2020). Lithothamnium calcareum (Pallas) aeschoug seaweed adsorbs aflatoxin B1 in vitro and improves broiler chicken’s performance. Mycotoxin Research, 36(4), 371–379. https://doi.org/10.1007/s12550-020-00402-y

Pereira, C. M. F., Lira, I. R. C., Braz, P. V. A., Bessa, N. J. de L., Machado, A. L., & Oliveira, G. S. (2021). A cadeia produtiva dos ovos e sua qualidade: uma revisão da produção à venda RESUMO. Brazilian Journal of Food Research, 12(1), 45–x. https://doi.org/10.3895/rebrapa.v12n1.14153

Rezende, E. B., Valentim, J. K., Garcia, R. G., Burbarelli, M. F. de C., Komiyama, C. M., Serpa, F. C., Caldara, F. R., Zanella, J., Braz, P. H., Almeida, A. A. de, & Felix, G. A. (2024). Calcareous seaweed in the diet of growing Japanese quail. Animal Science Papers and Reports, 42(1), 65–80. https://doi.org/10.2478/aspr-2023-0023

Rostagno, H. S. Albino, L. F. T., Hannas, M. I., Donzele, J. P., Sakomura, N. K., Perazzo, F. G., Saraiva, A., Teixeira, M. L., Rodrigues, P. B., Oliveira, R. F., Barreto, S. L. T., Brito, C. O. (2017). Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais (4 ed.). Viçosa: Departamento de Zootecnia, UFV. p. 488.

SAS Institute. (2009). SAS user´s guide: statistic. Version 9.1. Cary.

Silva, D. J., Queiroz, A. C. (2009). Análise de alimentos (métodos químicos e biológicos). (4 ed.) UFV.

Silversides, F. G., Budgell, K. (2004). The relationships among measures of egg albumen height, pH, and whipping volume. Poultry Science, 83, 1619-1623. https://doi.org/10.1093/ps/83.10.1619

Sousa, F. P. de, Souza, B. B. de, Brandão, P. A., Benício, T. M. A., Soares, Y. G. dos S., Carvalho, A. de B., Silva, M. R. da, & Fernandes, D. L. (2024). Utilização do Lithothamnium calcareum como suplemento de cálcio na alimentação de poedeiras comerciais semipesadas – Revisão. Revista COOPEX, 15, 4555–4563.

Sousa, F. P. de, Souza, B. B. de, Silva, A. M. de A., Brandão, P. A., Soares, Y. G. dos S., Benício, T. M. A., Carvalho, A. de B., Silva, M. R. da, & Fernandes, D. L. (2024). A influência do Lithothamnium calcareum e do ambiente na qualidade de ovos de poedeiras comerciais semipesadas no final de ciclo de produção. Revista Observatorio de La Economia Lationoamericana, 22, 634–649. https://doi.org/10.55905/oelv22ml-034

Spanivello, G. R., Valentim, J. K., Garcia, R. G., Burbarelli, M. F. de C., Przybulinski, B. B., Komiyama, C. M., Eberhart, B. de S., & Castilho, V. A. R. de. (2022). Calcareous seaweed flour in the diet of Japanese quails and its effects on egg conservation. Revista Brasileira de Saude e Producao Animal, 23, 1–13. https://doi.org/10.1590/s1519-9940201122232022

Vellasco, C. R., Gomes, P. C., Donzele, J. L., Rostagno, H. S., Calderano, A. A., de Carvalho Mello, H. H., & Pastore, S. M. (2016). Níveis de cálcio e relação cálcio: Fósforo em rações para poedeiras leves de 24 A 40 semanas de idade. Ciência Animal Brasileira, 17(2), 206–216. https://doi.org/10.1590/1089-6891v17i226916

Zafar, M. H., & Fatima, M. (2018). Efficiency comparison of organic and inorganic minerals in poultry nutrition: A review. PSM Veterinary Research, 3(2), 53–59. https://psmjournals.org/index.php/vetres/article/view/264

Authors

L. R. Ávila
F. K. Cruz
B. K. V. Leite
brendavianaleite@gmail.com (Primary Contact)
E. R. M. Garcia
Ávila, L. R., Cruz, F. K., Leite, B. K. V., & Garcia, E. R. M. (2025). Calcareous Algae (Lithothamnium calcareum) as an Alternative Source of Calcium in Commercial Layer Diets. Tropical Animal Science Journal, 48(3), 221-230. https://doi.org/10.5398/tasj.2025.48.3.221

Article Details

How to Cite

Ávila, L. R., Cruz, F. K., Leite, B. K. V., & Garcia, E. R. M. (2025). Calcareous Algae (Lithothamnium calcareum) as an Alternative Source of Calcium in Commercial Layer Diets. Tropical Animal Science Journal, 48(3), 221-230. https://doi.org/10.5398/tasj.2025.48.3.221