Multidrug-Resistant Methicillin-Resistant Coagulase-Negative Staphylococci and Staphylococcus aureus in Cattle and Goats from the East Coast of Peninsular Malaysia
Abstract
This study investigates the prevalence and antimicrobial resistance profiles of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCoNS) in livestock from Kelantan, Terengganu, and Pahang, Malaysia. Nasopharyngeal swabs from 290 goats and 106 cattle were processed using an improved transport and enrichment method. Staphylococci were identified via PCR targeting the nucA and mecA genes, with antimicrobial susceptibility determined according to CLSI and EUCAST guidelines. Among 396 isolates, 55 (13.9%) were identified as S. aureus, including one MRSA isolate (0.25%), and methicillin resistance was detected in 31 CoNS isolates (7.8%), predominantly from goats. Fourteen of the MRCoNS isolates exhibited multidrug resistance to 3 to 7 antibiotic classes, with 47.2% of CoNS isolates being resistant to fusidic acid, raising concerns about zoonotic transmission and public health risks. The prevalence of staphylococcal colonization and methicillin resistance was higher in goats than in cattle, suggesting that environmental exposures, management practices, and antibiotic use contribute to the resistance patterns. The findings highlight the urgent need for enhanced biosecurity measures, prudent antibiotic use, and expanded surveillance to address antimicrobial resistance in livestock. A One Health approach that integrates human, animal, and environmental health is essential to mitigating the spread of resistance. This study provides baseline data to guide future research, interventions, and policies in reducing public health risks associated with MDR staphylococci in livestock.
Full text article
References
Aklilu, E., & Ying, C. H. (2020). First mecC and mecA positive livestock-associated methicillin resistant Staphylococcus aureus (mecC MRSA/LA-MRSA) from dairy cattle in Malaysia. Microorganisms, 8(2). https://doi.org/10.3390/microorganisms8020147
Baird-Parker, A. C. (1962). An improved diagnostic and selective medium for isolating coagulase-positive staphylococci. Journal of Applied Bacteriology, 25(1), 12–19. https://doi.org/10.1111/j.1365-2672.1962.tb01113.x
Boloki, H. A., Al-Musaileem, W. F., AlFouzan, W., Verghese, T., & Udo, E. E. (2021). Fusidic acid resistance determinants in methicillin-resistant Staphylococcus aureus isolated in Kuwait hospitals. Medical Principles and Practice, 30(6), 542–549. https://doi.org/10.1159/000518408
Chai, M. H., Faiq, T. A. M., Ariffin, S. M. Z., Suhaili, Z., Sukiman, M. Z., & Ghazali, M. F. (2020). Prevalence of methicillin-resistant Staphylococcus aureus in raw goat milk from selected farms in Terengganu, Malaysia. Tropical Animal Science Journal, 43(1), 64–69. https://doi.org/10.5398/tasj.2020.43.1.64
Chai, M., Sukiman, M. Z., Kamarun Baharin, A. H., Ramlan, I., Lai, L. Z., Liew, Y., Malayandy, P., Mohamad, N. M., Choong, S., Ariffin, S. M. Z., & Ghazali, M. F. (2022). Methicillin-resistant Staphylococcus aureus from Peninsular Malaysian animal handlers: molecular profile, antimicrobial resistance, immune evasion cluster and genotypic categorization. Antibiotics, 11(1), 103. https://doi.org/10.3390/antibiotics11010103
Clinical and Laboratory Standard Institute (CLSI). (2020). Performance Standards for Anti-Microbial Susceptibility Testing (30th ed., M100). https://clsi.org/media/3481/m100ed30_sample.pdf
EUCAST. (2022). Clinical breakpoints - breakpoints and guidance. Version 12.0. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf
Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10, 107. https://doi.org/10.3389/fcimb.2020.00107
Jabatan Perkhidmatan Veterinar Malaysia. (2023). Perangkaan Ternakan 2022/2023. Jabatan Perkhidmatan Veterinar Malaysia. https://www.dvs.gov.my
Kalai, S., Roychoudhury, P., Dutta, T. K., Subudhi, P. K., Chakraborty, S., Barman, N. N., & Sen, A. (2021). Multidrug-resistant staphylococci isolated from pigs with exudative epidermitis in the northeastern region of India. Letters in Applied Microbiology, 72(5), 535–541. https://doi.org/10.1111/lam.13448
Khairullah, A. R., Kurniawan, S. C., Silaen, O. S. M., Effendi, M. H., Sudjarwo, S. A., Ramandinianto, S. C., Gololodo, M. A., Widodo, A., Riwu, K. H. P., Kurniawati, D. A., & Rehman, S. (2023). Methicillin-resistant Staphylococcus aureus (MRSA) isolation and mecA gene detection from milk and farmer hand swab in Tulungagung, Indonesia. Tropical Animal Science Journal, 46(2), 231-238. https://doi.org/10.5398/tasj.2023.46.2.231
Liang, B., Xiong, Z., Liang, Z., Zhang, C., Cai, H., Long, Y., Gao, F., Wang, J., Deng, Q., Zhong, H., Xie, Y., Huang, L., Gong, S., & Zhou, Z. (2022). Genomic basis of occurrence of cryptic resistance among oxacillin- and cefoxitin-susceptible mecA-positive Staphylococcus aureus. Microbiology spectrum, 10(3), e0029122. https://doi.org/10.1128/spectrum.00291-22
Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. A. (2023). Antimicrobial resistance: a growing serious threat for global public health. Healthcare, 11(13), 1946. https://doi.org/10.3390/healthcare11131946
Silva, V., Caniça, M., Ferreira, E., Vieira-Pinto, M., Saraiva, C., Pereira, J. E., Capelo, J. L., Igrejas, G., & Poeta, P. (2022). Multidrug-resistant methicillin-resistant coagulase-negative Staphylococci in healthy poultry slaughtered for human consumption. Antibiotics, 11(3), 365. https://doi.org/10.3390/antibiotics11030365
Tallent, S., Hait, J., Bennett, R. W., & Lancette, G. A. (2001). Staphylococcus aureus. In FDA Bacteriological Analytical Manual (Chapter 12). U.S. Food and Drug Administration. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-12-staphylococcus-aureus
Tanomsridachchai, W., Changkaew, K., Changkwanyeun, R., Prapasawat, W., Intarapuk, A., Fukushima, Y., Yamasamit, N., Flav Kapalamula, T., Nakajima, C., Suthienkul, O., & Suzuki, Y. (2021). Antimicrobial resistance and molecular characterization of methicillin-resistant Staphylococcus aureus isolated from slaughtered pigs and pork in the central region of Thailand. Antibiotics, 10(2), 206. https://doi.org/10.3390/antibiotics10020206
Terreni, M., Taccani, M., & Pregnolato, M. (2021). New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives. Molecules, 26(9), 2690. https://doi.org/10.3390/molecules26092671
Velazquez-Meza, M. E., Galarde-López, M., Carrillo-Quiróz, B., & Alpuche-Aranda, C. M. (2022). Antimicrobial resistance: One Health approach. Veterinary World, 15(3), 743–749. https://doi.org/10.14202/vetworld.2022.743-749
Zarizal, S., Yeo, C. C., Faizal, G. M., Chew, C. H., Zakaria, Z. A., Al-Obaidi, M. M. J., Amin, N. S., & Nasir, M. D. M. (2018). Nasal colonisation, antimicrobial susceptibility, and genotypic pattern of Staphylococcus aureus among agricultural biotechnology students in Besut, Terengganu, east coast of Malaysia. Tropical Medicine and International Health, 23(8), 905–913. https://doi.org/10.1111/tmi.13090
Authors
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.