Silage Quality, Rumen Fermentation Characteristics, and Nutrient Digestibility of Sorghum bicolor cv. Samurai 1 Harvested at Different Maturity Stages Treated with Fibrolytic Enzyme

F. A. Ratnaningtyas(1) , L. Abdullah(2) , N. R. Kumalasari(3) , A. Ernawati(4) , M. Ridla(5) , D. Diapari(6) , P. D. M. H. Karti(7)
(1) Study Program of Nutrition and Feed Sciences, Graduate School, IPB University,
(2) Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University,
(3) Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University,
(4) Study Program of Nutrition and Feed Sciences, Graduate School, IPB University,
(5) Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University ,
(6) Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University ,
(7) Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University

Abstract

The Samurai 1 variety is a genetically mutated strain with superior agronomic characteristics and enhanced nutrient content. This study aimed to evaluate the effect of harvest maturity stages and fibrolytic enzyme (Sunsonzyme) treatment on the nutrient value, fermentative quality, and nutrient digestibility of Sorghum bicolor cv. Samurai 1 silage. The silage quality was assessed using a completely randomized design with a 3 x 3 factorial arrangement. Sorghum was harvested at three different maturity stages, namely 85, 90, and 95 days, with fibrolytic enzyme added at 0%, 0.025%, and 0.05% of the dry matter. In vitro fermentability and digestibility were evaluated using a randomized block factorial design, which was also based on the same three harvest stages and enzyme levels. Observed variables included the nutrient composition of the sorghum, physical characteristics and nutrient content of the silage, as well as in vitro fermentability and digestibility. The results showed a significant interaction between harvest maturity and enzyme level on lactic acid production and total volatile fatty acid (VFA). Harvest age significantly affected (p<0.05) all variables, while the treatment of fibrolytic enzyme significantly increased ammonia (NH₃) and total VFA concentrations, as well as reduced the fiber fraction of the silage (p<0.05). The harvest age of 90 days showed the best quality in terms of nutrients, silage, and rumen fermentability. The addition of enzyme levels up to 0.05% improved the fermentative quality of silage, reduced fiber fractions, and enhanced rumen fermentability.

Full text article

Generated from XML file

References

Ardiansyah, Wiryawan, K. G., & Karti, P. D. M. H. (2016). Silage quality of sorghum harvested at different times and its combination of mixed legumes or concentrate evaluated in vitro. Media Peternakan, 39(1), 53-60. https://doi.org/10.5398/medpet.2016.39.1.53

Balo, E. F. S., Pendong, A. F., Tuturoong, R. A. V., Waani, M. R., & Malalantang, S. S. (2022). Pengaruh lama ensilase terhadap kandungan bahan kering (BK), bahan organik (BO), protein kasar (PK) sorgum varietas pahat ratun ke-1 sebagai pakan ruminansia. Zootec, 42(1), 74-80. https://doi.org/10.35792/zot.42.1.2022.41090

Baloyi, B. M., Ayodele, V. I., & Addo-Bediako, A. (2013). Effect of leaf harvest on crude protein and mineral contents of selected early maturing lines of lablab (Lablab purpureus). African Journal of Agricultural Research, 8(5), 449-453.

Bhasker, T. V., Nagalakshmi, D., & Rao, D. S. (2013). Development of appropriate fibrolytic enzyme combination for maize stover and its effect on rumen fermentation in sheep. Asian-Australasian Journal of Animal Science, 26(7), 945-951. https://doi.org/10.5713/ajas.2012.12590

Borshchevskaya, L. N., Gordeeva, T. L., Kalinina, A. N., & Sineokii, S. P. (2016). Spectrophotometric determination of lactic acid. Journal of Analytical Chemistry, 71, 755–758. https://doi.org/10.1134/S1061934816080037

Carvalho, W. G., Costa, K. A. D. P., Erifanio, P. S., Perim, R. C., Teixeira, D. A. A., & Medeiros, L. T. (2016). Silage quality of corn and sorghum added with forage peanuts. Universidade Federal Rural do Semi-Arido, 29(2), 465-472. http://dx.doi.org/10.1590/1983-21252016v29n224rc

Cattani, M., Guzzo, N., Mantovani, R., & Bailoni, L. (2017). Effect of total replacement of corn silage with sorghum silage on milk yield, composition, and quality. Journal of Animal Science and Biotechnology, 8(15), 1-8. https://doi.org/10.1186/s40104-017-0146-8

Chanthakhoun, V., Wanapat, M., Berg, J., & Kang, S. (2014). Influence of crude protein and energy level on feed intake, ruminal ammonia nitrogen, and methylglyoxal production in swamp buffaloes (Bubalus bubalis). Journal of Animal Plant Sciences, 24(6), 1716-1723. https://doi.org/10.1016/j.livsci.2011.11.011

Conway, E. J., & O’malley, E. (1942). Microdiffusion methods. Ammonia and urea using buffered absorbents. Biochemical Journal, 36(7-9), 655-661. https://doi.org/10.1042/bj0360655

Desta, S. T., Yuan, X., Li, J., & Shao, T. (2016). Ensiling characteristics, structural, and nonstructural carbohydrate composition and enzymatic digestibility of Napier grass ensiled with additives. Bioresource Technology, 221, 447-454. http://doi.org/10.1016/j.biortech.2016.09.068

Diaz, A., Ranilla, M. J., Giraldo, L. A, Tejido, M. L., & Carro, M. D. (2014). Treatment of tropical forages with exogenous fibrolytic enzymes: effects on chemical composition and in vitro rumen fermentation. Journal of Animal Physiology and Animal Nutrition, 99(2), 345-355. https://doi.org/10.1111/jpn.12175

DiosLeon, G. E., Ramos-Juarez, J. A., Izquierdo-Reyes, F., Joaquin-Torres, B. M., & Melendez-Nava, F. (2022). Productive performance and nutritional value of Pennisetum purpureum cv. Cuba CT-115 grass at different regrowth ages. Revista Mexicana de Ciencias Pecuarias, 13(4), 1055-1066. https://doi.org/10.22319/rmcp.v13i4.5217

Erickson, J. E., Helsel, Z. R., Woodard, K. R., Vendramini, J. M. B., Wang, Y., Sollenberger, L. E., & Gilbert, R. A. (2011). Planting date affects biomass and brix of sweet sorghum grown for biofuel across florida. Agronomy Journal, 103(6), 1827-1833. https://doi.org/10.2134/agronj2011.0176

Foster, J. L., Martha, E., Moen, T., McCuistion, K. C., Redmon, L. A., & Jessup, R. W. (2019). Potential of ensiling sorghum without grain pretreated with enzymes or bacterial inoculants. Crop Science, 59(5), 2258-2263. https://doi.org/10.2135/cropsci2019.02.0096

Gemeda, B. S., Hassen, A., & Odongo, N. E. (2014). Effect of fibrolytic enzyme product at different levels on in vitro ruminal fermentation of low quality feeds and total mixed ration. Journal of Animal and Plant Sciences, 24(5), 1293-1302. https://doi.org/10.3920/978-90-8686-781-3_24

Harper, M. T., Oh, J., Giallongo, F., Lopes, J. C., Roth, G. W., & Hristov, A. N. (2017). Using brown midrib 6 dwarf forage sorghum silage and fall-grown oat silage in lactating dairy cow rations. Journal of Dairy Science, 100(7), 5250-5265. https://doi.org/10.3168/jds.2017-12552

He, L., Zhou, W., Wang, C., Yang, F., Chen, X., & Zhang, Q. (2019). Effect of cellulase and Lactobacillus casei on ensiling characteristics, chemical composition, antioxidant activity, and digestibility of mulberry leaf silage. Journal of Dairy Science, 102(11), 9919-9931. https://doi.org/10.3168/jds.2019-16468

Idikut, L., Arikan, B. A., Kaplan, M., Guven, I., Atalay, A. I., & Kamalak, A. (2009). Potential nutritive value of sweet corn as a silage crop with or without corn ear. Journal of Animal and Veterinary Advances, 8(4), 734-741.

Kaewpila, C., Khota, W., Gunun, P., Kesorn, P., & Cherdthong, A. (2020). Strategic addition of different additive to improve silage fermentation, aerobic stability, and in vitro digestibility of napier grasses at late maturity stage. Agriculture, 10(7), 1-13. https://doi.org/10.3390/agriculture10070262

Khosvari, M., Rouzbehan, Y., Rezaei, M., & Rezaei, J. (2018). Total replacement of corn silage with sorghum silage improves milk fatty acid profile and antioxidant capacity of Holstein dairy cows. Journal of Dairy Science, 101(12), 10953-10961. https://doi.org/10.3168/jds.2017-14350

Khota, W., Pholsen, S., Higgs, D., & Cai, Y. (2017). Fermentation quality and in vitro methane production of sorghum silage prepared with cellulase and lactic acid bacteria. Asian-Australasian Journal of Animal Sciences, 30(11), 1568-1574. https://doi.org/10.5713/ajas.16.0502

Kilic, A. (1986). Silo feed (instruction, education and application proposals). Bilgehan Press.

Lestari, D. A., Abdullah, L., & Despal. (2015). Comparative study of milk production and feed efficiency on farmers best practices and national research council. Media Peternakan, 38(2), 110-117. https://doi.org/10.5398/medpet.2015.38.2.110

Lyons, S. E., Ketterings, Q. M., Godwin, G. S., Cherney, D. J., Cherney, J. H., Amburgh, M. E. V., Meisinger, J. J., & Kilcer, T. F. (2019). Optimal harvest timing for brown midrib forage sorghum yield, nutritive value, and ration performance. Journal of Dairy Science, 102(8), 7134-7149. https://doi.org/10.3168/jds.2019-16516

Li, S., Zhang, Y., Ding, C., Gao, X., Wang, R., Mo, W., lv, F., Wang, S., Liu, L., Tang, Z., Tian, H., Zhang, J., Zhang, B., Huang, Q., Lu, M., Wuyun, T., Hu, Z., Xia, Y., & Su, X. (2019). Proline-rich protein gene PdPRP regulates secondary cell wall formation in poplar. Journal of Plant Physiology, 233, 58-72. https://doi.org/10.1016/j.jplph.2018.12.007

Luo, A., Kang, S., & Chen, J. (2020). SUGAR Model-assisted analysis of carbon allocation and transformation in tomato fruit under different water along with potassium conditions. Frontier in Plant Science, 11, 712. https://doi.org/10.3389/fpls.2020.00712

Malalantang, S. S., Telleng, M. M., Waani, M. R., Kaunang, W. B., & Kumajas, N. J. (2023). Carrying capacity and productivity of sorghum Samurai 1, Samurai 2, Patir 37 and Pahats in the Tampusu Livestock Area North Sulawesi Province. Journal of Xi’an Shiyou University, 19(10), 576-580.

McCuistion, K., Foster, J.L., Schuster, G., Wester, D., Lopez, Z., Umphres, A. M., & Coronado, A. (2017). Forage mass, nutritive value, and in situ degradation of sorghum silage treated with fibrolytic enzymes. Crop, Forage, Turfgrass Management, 3(1), 1-7. https://doi.org/10.2134/cftm2016.12.0077

McDonald, P., Edwards, R. A., Greenhalgh, J. F. D., Morgan, C. A., & Sinclair, L. A. (2010). Animal Nutrition (7th ed.). Prentice Hall.

Nusrathali, N., Mufeeth, M., Ahamed, A. S., Majeed, U. A., & Musthafa, M. M. (2021). Comparison of chemical composition and quality of maize, sorghum and hybrid napier grass CO-3 silages using bag or bucket silos. Journal of Bangladesh Agricultural University, 19(3), 348-353. https://doi.org/10.5455/JBAU.70271

Palealu, F. R., Waani, M. R., Tuturoong, R. A. V., & Malalantang, S. S. (2022). Pengaruh waktu pemanenan sorgum Samurai 1 ratun ke 1 terhadap berat segar, kadar bahan kering, dan protein kasar sebagai pakan ruminansia. Zootec, 42(1), 68-73. https://doi.org/10.35792/zot.42.1.2022.40882

Phakachoed, N., Suksombat, W., Colombatto, D., & Beauchemin, K. A. (2013). Use of fibrolytic enzymes additives to enhance in vitro ruminal fermentation of corn silage. Livestock Science, 157(1), 100-112. https://doi.org/10.1016/j.livsci.2013.06.020

Pholsen, S., Khota, W., Pang, H., Higgs, D., & Cai, Y. (2016). Characterization and application of lactic acid bacteria for tropical silage preparation. Animal Science Journal, 87(10), 1202-1211. https://doi.org/10.1111/asj.12534

Puteri, R. E., Karti, P. D. M. H., Abdullah, L., & Supriyanto. (2015). Productivity and nutrient quality of some sorghum mutant lines at different cutting ages. Media Peternakan, 38(2), 132-137. https://doi.org/10.5398/medpet.2015.38.2.132

Putri, I. Y., Hadi, M. S., Setiawan, K., & Kamal, M. (2021). Evaluasi karakter agronomi dan laju fotosintesis empat genotype sorgum (Sorghum bicolor (L.) Moench). Inovasi Pembangunan-Jurnal Kelitbangan, 9(1), 1-13. https://doi.org/10.35450/jip.v9i01.221

Riswandi, Priyanto, L., Imsya, A., & Nopiyanti, M. (2017). In vitro digestibility of fermented hymenacne acutigluma-based rations supplemented with different legumes. Journal Veteriner, 18(2), 303-311. https://doi.org/ 10.19087/jveteriner.2017.18.2.303

Sabertanha, E., Rouzhehan, Y., Fazaeli, H., & Rezaei, J. (2021). Nutritive value of sorghum silage for sheep. Journal of Animal Physiology and Animal Nutrition, 105(6), 1034-1045. https://doi.org/10.1111/jpn.13548

Savitri V. M., Sudarwati, H., & Hermanto, H. (2013). Pengaruh umur pemotongan terhadap produktivitas gamal (Gliricidia sepium). Jurnal Ilmu-ilmu Peternakan Universitas Brawijaya, 23(2), 25-35.

Steel, R. G. D., & Torrie, J. H. (1997). Principles and procedures of statistics. McGraw-Hill.

Sriagtula, R., Karti, P. D. M. H., Abdullah. L., Supriyanto, S., & Astuti, D. A. (2016). Growth, biomass and nutrient production of brown midrib sorghum mutant lines at different harvest times. Pakistan Journal of Nutrition, 15(6), 524-531. https://doi.org/10.3923/pjn.2016.524.531

Sriagtula, R., Martaguri, I., Hellyward, J., & Sowmen, S. (2019). Pengaruh inokulan bakteri asam laktat dan aditif terhadap kualitas dan karakteristik silase sorgum mutan brown midrib (Sorghum bicolor L. Moench). Pastura, 9(1), 40-43. https://doi.org/10.24843/Pastura.2019.v09.i01.p11

Sriagtula, R., Karti, P. D. M. H., Abdullah, L., Supriyanto, S., & Astuti, D. A. (2017). Nutrient changes and in vitro digestibility in generative stage of M10-BMR sorghum mutant lines. Media Peternakan, 40(2), 111-117. https://doi.org/10.5398/medpet.2017.40.2.111

Sriagtula, R., Karti. P. D. M. H., Abdullah, L., Supriyanto, S., & Astuti, D. A. (2021). Fiber fraction, and in vitro fiber digestibility of brown-midrib sorghum mutant lines affected by the maturity stages. Tropical Animal Science Journal, 44(3), 297-306. https://doi.org/10.5398/tasj.2021.44.3.297

Tasie, M. M., & Gebreyes, B. Z. (2020). Characterization of nutritional, antinutritional, and mineral content of thirty-five sorghum varieties grown in Ethiopia. International Journal of Food Science, 2020(1), 1-11. https://doi.org/10.1155/2020/8243617

Tilley, J. M. A., & Terry, R. A. (1963). A two‐stage technique for the in vitro digestion of forage crops. Grass and Forage Science, 18(2), 104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

Wahyono, T., Sugoro, I., Jayanegara, A., Wiryawan, K. G., & Astuti, D. A. (2019). Nutrien profile and in vitro degradability of new promising mutant lines sorghum as forage in Indonesia. Advances in Animal and Veterinary Science, 7(9) 810-818. http://dx.doi.org/10.17582/journal.aavs/2019/7.9.810.818

Widiyanto, Soejono, M., Kamal, M., Sudjatmogo, & Suranto. (2016). Pengaruh musim terhadap status mineral hijauan di ladang ternak “bila river ranch” sidrap Sulawesi Selatan. Agromedia, 34, 15-20.

Xie, Z. L., Zhang, T. F., Chen, X. Z., Li, G. D., & Zhang, J. G. (2012). Effect of maturity stages on the nutritive composition and silage quality of whole crop wheat. Asian-Australasian Journal of Animal Science, 25(10), 1374-1380. https://doi.org/10.5713/ajas.2012.12084

Xiong, H., Zhu, Y., Wen, Z., Liu, G., Guo, Y., & Sun, B. (2022). Effects of cellulase, Lactobacillus plantarum, and sucrose on fermentation parameters, chemical composition, and bacterial community of hybrid pennisetum silage. Fermentation, 8(8), 1-10. https://doi.org/10.3390/fermentation8080356

Yang, Y., Ferreira, G., Corl, B. A., & Campbell, B. T. (2019). Production performance, nutrient digestibility, and milk fatty acid profile of lactating dairy cows fed corn silage- or sorghum silage-based diets with and without xylanase supplementation. Journal of Dairy Science, 102(3), 1-9. https://doi.org/10.3168/jds.2018-15801

Zailan, M. Z., Yaakub, H., & Jusoh, S. (2016). Yield and nutritive value of four Napier (Pennisetum purpureum) cultivars at different harvesting ages. Agriculture and Biology Journal of North America, 7(5), 213-219.

Zhao, G., Wu, H., Li, L., He, J., Hu, Z., Yang, X., & Xie, X. (2021). Effects of applying cellulase and starch on the fermentation characteristics and microbial communities of Napier grass (Pennisetum purpureum Schum.) silage. Journal of Animal Science and Technology, 63(6), 1301-1313. https://doi.org/10.5187/jast.2021.e107

Zhang, Y., Xu, S., Ji, F., Hu, Y., Gu, Z., & Xu, B. (2020). Plant Cell wall hydrolysis process reveals structure–activity relationships. Plant Methods, 16(147), 1-10. https://doi.org/10.1186/s13007-020-00691-5

Authors

F. A. Ratnaningtyas
L. Abdullah
labdull@apps.ipb.ac.id (Primary Contact)
N. R. Kumalasari
A. Ernawati
M. Ridla
D. Diapari
P. D. M. H. Karti
Ratnaningtyas, F. A., Abdullah, L., Kumalasari, N. R., Ernawati, A., Ridla, M., Diapari, D., & Karti, P. D. M. H. (2025). Silage Quality, Rumen Fermentation Characteristics, and Nutrient Digestibility of Sorghum bicolor cv. Samurai 1 Harvested at Different Maturity Stages Treated with Fibrolytic Enzyme. Tropical Animal Science Journal, 48(3), 211-220. https://doi.org/10.5398/tasj.2025.48.3.211

Article Details

How to Cite

Ratnaningtyas, F. A., Abdullah, L., Kumalasari, N. R., Ernawati, A., Ridla, M., Diapari, D., & Karti, P. D. M. H. (2025). Silage Quality, Rumen Fermentation Characteristics, and Nutrient Digestibility of Sorghum bicolor cv. Samurai 1 Harvested at Different Maturity Stages Treated with Fibrolytic Enzyme. Tropical Animal Science Journal, 48(3), 211-220. https://doi.org/10.5398/tasj.2025.48.3.211