Variation and Association of Avian β-Defensin 2 Gene with the Concentration of Immunoglobulin Y and the Titer of Newcastle-Disease Antibody in IPB-D1 Chicken

D. Lestari(1) , Masruroh(2) , I. Khaerunnisa(3) , S. Murtini(4) , N. Ulupi(5) , A. Gunawan(6) , C. Sumantri(7)
(1) Department of Animal Production and Technology, Faculty of Animal Science, IPB University,
(2) Department of Animal Production and Technology, Faculty of Animal Science, IPB University,
(3) Research Center for Biotechnology, Research Organization for Life Sciences, National Research and Innovation Agency (BRIN),
(4) Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University,
(5) Department of Animal Production and Technology, Faculty of Animal Science, IPB University,
(6) Department of Animal Production and Technology, Faculty of Animal Science, IPB University,
(7) Department of Animal Production and Technology, Faculty of Animal Science, IPB University

Abstract

Defensins play roles in innate immunity by exhibiting antimicrobial activity against microbes such as gram-negative and -positive bacteria, viruses, and fungi. This study aimed to identify variants of the Avian β-Defensin 2 (AvBD2) and determine their associations with the concentration of immunoglobulin Y and the titer of Newcastle disease (ND) antibody in IPB-1 chicken. The chicken population used in this study was 21-week-old IPB-D1 chickens (n=90). Variations in AvBD2 were analyzed by direct DNA sequencing. IgY concentration was measured by indirect ELISA, and the titer of ND antibody was measured by the hemagglutination-inhibition test. The AvBD2 association was analyzed by the general linear model procedure and Duncan’s multiple range test. The results revealed 10 SNPs located in intron 1 (3 SNPs), exon 2 (3 SNPs), and intron 2 (4 SNPs). Six of these SNPs were associated with IgY concentration. The CC genotype of g.5002 C>T was associated with IgY concentration and produced the highest mean IgY concentration. This g.5002 C>T mutation results in alanine-to-valine substitutions. The CC genotype of g.5002 C>T could be considered as a criterion for selecting chickens with high IgY concentrations.

Full text article

Generated from XML file

References

Al Habib, M. F., S. Murtini, A. Gunawan, N. Ulupi, & C. Sumantri. 2020. Polymorphism of CD1B gene and its association with yolk immunoglobulin (IgY) concentration and Newcastle disease antibody titer in IPB-D1 chicken. Trop. Anim. Sci. J. 43:197-204. https://doi.org/10.5398/tasj.2020.43.3.197

Al Habib, M. F., S. Murtini, L. Cyrilla, I. I. Arief, R. Mutia, & C. Sumantri. 2020. Performa pertumbuhan ayam IPB-D1 pada perlakuan pakan dan manajemen pemeliharaan yang berbeda. J. Agripet. 20:177-186. https://doi.org/10.17969/agripet.v20i2.16375

Allendorf, F. W., & G. H. Luikart. 2007. Conservation and the Genetics of Population. Blackwell Publishing, Oxford.

Cruzat, V. F., M. Krause, & P. Newsholme. 2014. Amino acid supplementation and impact on immune function in the context of exercise. J. Int. Soc. Sports Nutr. 11:61. https://doi.org/10.1186/s12970-014-0061-8

Cuperus, T., M. Coorens, A. van Dijk, & H. P. Haagsman. 2013. Avian host defense peptides. Dev. Comp. Immunol. 41:352-369. https://doi.org/10.1016/j.dci.2013.04.019

Derache, C., V. Labas, V. Aucagne, H. Meudal, C. Landon, A. F. Delmas, T. Magallon, & A. C. Lalmanach. 2009. Primary Structure and Antibacterial Activity of Chicken Bone Marrow-Derived β-Defensins. Antimicrob. Agents Chemother. 53:4647-4655. https://doi.org/10.1128/AAC.00301-09

Guo, C., I. C. McDowell, M. Nodzenski, D. M. Scholtens, A. S. Allen, W. L. Lowe, & T. E. Reddy. 2017. Transversions have larger regulatory effects than transitions. BMC Genomic. 18:394. https://doi.org/10.1186/s12864-017-3785-4

Harter, H. L. 1960. Critical values for Duncan’s new multiple range test. Biometrics 16:671-685. https://doi.org/10.2307/2527770

Hasenstein, J. R., & S. J. Lamont. 2007. Chicken gallinacin gene cluster associated with Salmonella response in advanced intercross line. Avian Dis. 51:561-567. https://doi.org/10.1637/0005-2086(2007)51[561:CGGCAW]2.0.CO;2

Hong, Y. H., W. Song, S. H. Lee, & H. S. Lillehoj. 2012. Differential gene expression profiles of β-defensins in the crop, intestine, and spleen using a necrotic enteritis model in 2 commercial broiler chicken lines. Poult. Sci. 91:1081-1088. https://doi.org/10.3382/ps.2011-01948

Hong, Y., J. Lee, T. H. Vu, S. Lee, H. S. Lillehoj, & Y. H. Hong. 2020. Chicken avian β-defensin 8 modulates immune response via the mitogen-activated protein kinase signaling pathways in a chicken macrophage cell line. Poult. Sci. 99:4174-4182. https://doi.org/10.1016/j.psj.2020.05.027

Hossain, K. M. M., M. Y. Ali, & I. Yamato. 2010. Antibody levels against Newcastle Disease Virus in chickens in Rajshahi and surrounding districts of Bangladesh. Int. J. Biol. 2:1-5. https://doi.org/10.5539/ijb.v2n2p102

Indriani, R. & I. Dharmayanti. 2016. Respon titer antibodi and proteksi virus Newcastle disease genotype I, II, VI dan VII sebagai vaksin terhadap infeksi isolat virus Newcastle disease chicken/Indonesia/GTT/11. Jurnal Biologi Indonesia 12:211-218.

Kapczynski, D. R., C. L. Afonso, & P. J. Miller. 2013. Immune responses of poultry to Newcastle disease virus. Dev. Comp. Immunol. 41:447-453. https://doi.org/10.1016/j.dci.2013.04.012

Kowalczyk, K. J., J. Daiss, J. Halpern, & T. F. Roth. 1985. Quantitation of maternal-fetal IgG transport in the chicken. Immunology. 54:755-762.

Li, P., Y. L. Yin, D. Li, S. W. Kim, & G. Wu. 2007. Amino acids and immune function. Br. J. Nutr. 98:237-252. https://doi.org/10.1017/S000711450769936X

Liu, C., L. Jiang, L. Liu, L. Sun, W. Zhao, Y. Chen, T. Qi, Z. Han, Y. Shao, S. Liu, & D. Ma. 2018. Induction of Avian β-Defensin 2 is possibly mediated by the p38 MAPK signal pathway in chicken embryo fibroblasts after Newcastle disease virus infection. Front. Microbiol. 9:751. https://doi.org/10.3389/fmicb.2018.00751

Lynn, D. J., R. Higgs, S. Gaines, J. Tierney, T. James, A. T. Lloyd, M. A. Fares, G. Mulcahy, & C. O’Farrelly. 2004. Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics 56:170-177. https://doi.org/10.1007/s00251-004-0675-0

Lynn, D. J., R. Higgs, A. T. Lloyd, C. O’Farrelly, V. Hervé-Grépinet, Y. Nys, F. S. Brinkman, P. L. Yu, A. Soulier, P. Kaiser, G. Zhang, & R. I. Lehrer. 2007. Avian beta-defensin nomenclature: a community proposed update. Immunol. Lett. 110:86-89. https://doi.org/10.1016/j.imlet.2007.03.007

Morammazi, S. & H. Habibi. 2017. Sequence variation in GAL1 and GAL2 genes in Khuzestan local chickens. Eur. Online J. Nat. Soc. Sci. 6:508-515.

Masrurah, I. Khaerunnisa, S. Murtini, & C. Sumantri. 2021. Avian Beta Defensin 2 (AvBD2) gene polymorphism identification in IPB-D1 chicken. JITV 26:82-88. https://doi.org/10.14334/jitv.v26i2.2715

Mukhopadhyay, T. & S. Bhattacharjee. 2016. Genetic diversity: Importance and Measurements. In: A. H. Mir, N. A. Bhat (Eds). Conserving Biological Diversity: A Multiscaled Approach. Research India Publications, New Delhi. p. 251-295.

Munhoz, L. S., G. D. Vargas, G. Fischer, Md Lima, P. A. Esteves, & S. de Oliviera Hübner. 2014. Avian IgY antibodies: Characteristics and applications in immunodiagnostic. Cienc. Rural. 44:153-160. https://doi.org/10.1590/S0103-84782014000100025

Rahman, M., S. Mostafijur, R. Deb, & M. Nooruzzaman. 2017. Evaluation of serum antibody titer level against Newcastle disease virus in vaccinated broiler chickens. Avas 4:94-98.

Rengaraj, D., A. D. Truong, H. S. Lillehoj, J. Y. Han, & Y. H. Hong. 2018. Expression and regulation of avian beta-defensin 8 protein in immune tissues and cell lines of chickens. Asian-Australas. J. Anim. Sci. 31:1516-1524. https://doi.org/10.5713/ajas.17.0836

Sugiarto, H. & P. L. Yu. 2004. Avian antimicrobial peptides: the defense role of beta-defensins. Biochem. Biophys. Res. Commun. 323:721-727. https://doi.org/10.1016/j.bbrc.2004.08.162

Sumantri, C., I. Khaerunnisa, & A. Gunawan. 2020. The genetic quality improvement of native and local chicken to increase production and meat quality in order to build the Indonesian chicken industry. IOP Conf. S. Earth Environ. Sci. 492:012099. https://doi.org/10.1088/1755-1315/492/1/012099

Terada, T., T. Nii, N. Isobe, & Y. Yoshimura. 2018. Changes in the expression of Avian β-defensins (AvBDs) and proinflammatory cytokines and localization of AvBD2 in the intestine of broiler embryos and chicks during growth. J. Poult. Sci. 55:280-287. https://doi.org/10.2141/jpsa.0180022

Ulupi, N., C. Sumantri, & S. Darwati. 2016. Resistance Against Salmonella Pullorum in IPB-D1 Crossbreed, Kampong and Commercial Broiler Chicken. The 1st Conference Technology on Bioscience and Social Science. Universitas Andalas, Padang.

van Dijk, A., E. J. A. Veldhuizen, & H. P. Haagsman. 2008. Avian defensins. Vet. Immunol. Immunopathol. 124:1-18. https://doi.org/10.1016/j.vetimm.2007.12.006

Authors

D. Lestari
Masruroh
I. Khaerunnisa
S. Murtini
N. Ulupi
A. Gunawan
C. Sumantri
ceces@apps.ipb.ac.id (Primary Contact)
Lestari, D., Masruroh, Khaerunnisa, I., Murtini, S., Ulupi, N., Gunawan, A., & Sumantri, C. (2022). Variation and Association of Avian β-Defensin 2 Gene with the Concentration of Immunoglobulin Y and the Titer of Newcastle-Disease Antibody in IPB-D1 Chicken. Tropical Animal Science Journal, 45(2), 121-127. https://doi.org/10.5398/tasj.2022.45.2.121

Article Details

How to Cite

Lestari, D., Masruroh, Khaerunnisa, I., Murtini, S., Ulupi, N., Gunawan, A., & Sumantri, C. (2022). Variation and Association of Avian β-Defensin 2 Gene with the Concentration of Immunoglobulin Y and the Titer of Newcastle-Disease Antibody in IPB-D1 Chicken. Tropical Animal Science Journal, 45(2), 121-127. https://doi.org/10.5398/tasj.2022.45.2.121

List of Cited By :

Crossref logo