Synthetic Gene-Based Heterologous Expression, Proteolytic, and Structural Characterization of Caseinolytic Protease of Lactobacillus plantarum IIA-1A5

M. Yusuf(1) , C. Budiman(2) , I. I. Arief(3) , C. Sumantri(4)
(1) IPB University,
(2) Department of Animal Production and Technology, Faculty of Animal Science, IPB University,
(3) Department of Animal Production and Technology, Faculty of Animal Science, IPB University,
(4) Department of Animal Production and Technology, Faculty of Animal Science, IPB University

Abstract

Genome sequence of Indonesian probiotic of Lactobacillus plantarum II1A5 contains a gene encoding a proteolytic subunit of caseinolytic protease, designated as ClpP_LP. This study aims to express the Clp gene heterological and apply its proteolytic activity to some livestock products. To address this, the gene encoding ClpP_LP was optimized in silico by improving its Codon Adaptation Index and GC content to 0.94 and 53.62%, respectively. The optimized gene was then inserted into pET28a, transformed into Escherichia coli BL21(DE3), and over-expressed by induction of 1 mM Isopropyl β-D-1-thiogalactopyranoside at 37°C. The result showed that ClpP_LP was successfully over-expressed in a fully soluble form with the specific activity towards milk casein was 7739.89 AU mg-1. This activity was significantly greater than that of chymotrypsin. Further, the three-dimensional model of ClpP_LP was built using SWISS MODEL, which showed that this protein formed a homo-tetradecameric (14-mer) structure with each monomer consisting of 7 α-helix and 10 β-sheets. The identification of the active side showed that the active side of ClpP_LP is Ser-97, His-122, Asp-171, and forms a substrate-binding cavity with a size of about 29.5 Ǻ. Overall, our approach can serve as an appropriate platform for the production of ClpP_LP in a large-scale production for various applications in dairy products and derivatives.

Full text article

Generated from XML file

References

Afiyah, D. N., I. I. Arief, & C. Budiman. 2015. Proteolytic characterization of trimmed beef fermented sausages inoculated by Indonesian probiotics: Lactobacillus plantarum IIA-2C12 and Lactobacillus acidophilus IIA-2B4. Adv. J. Food. Sci. Technol. 8:27-35. https://doi.org/10.19026/ajfst.8.1459

Arief, I. I., B. S. L. Jenie, M. Astawan, K. Fujiyama, & A. B. Witarto. 2015. Identification and probiotic characteristics of lactic acid bacteria isolate from Indonesian local beef. Asian J. Anim. Sci. 9:25-36. https://doi.org/10.3923/ajas.2015.25.36

Arief, I. I., Jakaria, T. Suryati, Z. Wulandari, & E. Andreas. 2013. Isolation and characterization of plantaricin produced by Lactobacillus plantarum Strain (IIA-1A5, IIA-1B1, IIA-2B2). Med. Pet. 36:91-100. https://doi.org/10.5398/medpet.2013.36.2.91

Aruna, K., J. Shah, & R. Birmole. 2014. Production and partial char-acterization of alkaline protease from Bacillus tequilensis strains CSGAB 0139 isolated from spoilt cottage cheese. Int. J. Appl. Biol. Pharm. 5:201-21.

Ban, E. & C. R. Picu. 2013. Strength of DNA sticky end links. Biomacromolecules 15:143−149. https://doi.org/10.1021/bm401425k

Biasini, M., S. Bienert, A. Waterhouse, K. Arnold, G. Studer, T. Schmidt, F. Kiefer, T. Gallo Cassarino, M. Bertoni, & L. Bordoli. 2014. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42: W252-W258. https://doi.org/10.1093/nar/gku340

Bienert, S., A. Waterhouse, T. A. P. de Beer, G. Tauriello, G. Studer, L. Bordoli, & T. Schwede. 2017. The SWISS-MODEL repository--new features and functionality. Nucleic Acids Res. 45:D313-D319. https://doi.org/10.1093/nar/gkw1132

Bordoli, L., F. Kiefer, K. Arnold, P. Benkert, J. Battey, & T. Schwede. 2009. Protein structure homology modeling using SWISS-MODEL workspace. Nat. Protoc. 4:1-13. https://doi.org/10.1038/nprot.2008.197

Browning, D. F., R. E. Godfrey, K. L. Richards, C. Robinson, & S. J. W. Busby. 2019. Exploitation of the Escherichia coli lac operon promoter for controlled recombinant protein production. Biochem. Soc. Trans. 47:755–763. https://doi.org/10.1042/BST20190059

Budiman, C., I. I. Arief, F. Opook, & M. Yusuf. 2021. A meat-derived lactic acid bacteria, Lactobacillus plantarum IIA, expresses a functional parvulin-like protein with unique structural property. Online J. Biol. Sci. 21:120-135. https://doi.org/10.3844/ojbsci.2021.120.135

Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, & T. L. Madden. 2009. BLAST+: architecture and applications. BMC Bioinformatics. 10, 421. https://doi.org/10.1186/1471-2105-10-421

Cardoso, V. M., G. Campani, M. P. Santos, G. G. Silva, M. C. Pires, V. M. Gonçalves, R. de C. Giordano, C. R. Sargo, A. C. L. Horta, & T. C. Zangirolami. 2020. Cost analysis based on bioreactor cultivation conditions: Production of a soluble recombinant protein using Escherichia coli BL21(DE3). Biotechnol. Rep. 26:1-13. https://doi.org/10.1016/j.btre.2020.e00441

Fatmarani, R., I. I. Arief, & C. Budiman. 2018. Purification of bacteriocin from Lactobacillus plantarum IIA-1A5 grown in various whey cheese media under freeze dried condition. Trop. Anim. Sci. J. 41:191-199. https://doi.org/10.5398/tasj.2018.41.1.53

Fiege, K., & N. F. Dinkel. 2020. Construction of a new T7 promoter compatible Escherichia coli Nissle 1917 strain for recombinant production of heme dependent proteins. Microb. Cell Fact. 19:190. https://doi.org/10.1186/s12934-020-01447-5

Florentin, A., D. R. Stephens, C. F. Brooks, R. P. Baptista, & V. Muralidharan. 2020. Plastid biogenesis in malaria parasites requires the interactions and catalytic activity of the Clp proteolytic system. PNAS. https://doi.org/10.1073/pnas.1919501117

Frees, D., U. Gerth, & H. Ingmer. 2014. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. Int. J. Med. Microbiol. 304:142-149. https://doi.org/10.1016/j.ijmm.2013.11.009

Fu, H., Y. Liang, X. Zhong, Z. Pan, L. Huang, H. Zhang, Y. Xu, W. Zhou, & Z. Liu. 2020. Codon optimization with deep learning to enhance protein. Sci. Rep. 10: Article number 17617. https://doi.org/10.1038/s41598-020-74091-z

Gaspar, P., J. L. Oliveira, J. Frommlet, M. A. Santos, & G. Moura. 2012. EuGene: maximizing synthetic gene design for heterologous expression. Bioinformatics 28:683-2684. https://doi.org/10.1093/bioinformatics/bts465

Gurung, N., S. Ray, S. Bose, & V. Rai. 2013. A broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res. Int. 2013:1-18. https://doi.org/10.1155/2013/329121

Haddad, Y., V. Adam, & Z. Heger. 2020. Ten quick tips for homology modeling of highresolution protein 3D structures. Plos Comput. Biol. 16:e1007449. https://doi.org/10.1371/journal.pcbi.1007449

Hughes, R. A., A. E. Miklos, & A. D. Ellington. 2011. Gene synthesis: methods and applications. Methods Enzymol. 498:277-309. https://doi.org/10.1016/B978-0-12-385120-8.00012-7

Kang, Y. S., J. A. Song, K. Y. Han, & J. Lee. 2015. Escherichia coli EDA is a novel fusion expression partner to improve solubility of aggregation-prone heterologous proteins. J. Biotechnol. 194:39-47. https://doi.org/10.1016/j.jbiotec.2014.11.025

Kuhlman, B. & P. Bradley. 2019. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol. 20:681-697. https://doi.org/10.1038/s41580-019-0163-x

Lee, B. G., M. K. Kim, & H. K. Song. 2011. Structural insights into the conformational diversity of ClpP from Bacillus subtilis. Mol. Cells. 32:589-595. https://doi.org/10.1007/s10059-011-0197-1

Li, Q., L, Yi, P. Marek, & B. L. Iverson. 2013. Commercial proteases: Present and future. FEBS Lett. 587:1155-1163. https://doi.org/10.1016/j.febslet.2012.12.019

Liu, B., Q. Kong, D. Zhang, & L. Yan. 2018. Codon optimization significantly enhanced the expression of human 37-kDa iLRP in Escherichia coli. 3 Biotech 8:Article number 210. https://doi.org/10.1007/s13205-018-1234-y

Mauro, V. P. 2018. Codon optimization in the production of recombinant biotherapeutics: Potential risks and considerations. BioDrugs 32:69-81. https://doi.org/10.1007/s40259-018-0261-x

Miguel, Â. S. M., T. S. Martins-Meyer, E. Veríssimo da Costa Figue-iredo, B. W. P. Lobo, & G. M. Dellamora-Ortiz. 2013. Enzymes in bakery: Current and future trends. In: Muzzalupo I (Eds). Food Industry. InTech, Rijeka, Croatia.

Murwantoko., C. K. Fusianto, & Triyanto. 2016. Gene cloning and protein expression of koi herpesvirus ORF25. Hayati 23:143-149. https://doi.org/10.1016/j.hjb.2016.10.001

Newman, M., T. Strzelecka, L. F. Dorner, Schildkraut, & A. K. Aggarwal. 1994. Structure of endonuclease BamH1 and its relationship to EcoR1. Nature 368:660-664. https://doi.org/10.1038/368660a0

Nigam, P. S. 2013. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3:597-611. https://doi.org/10.3390/biom3030597

Rahimzadeh, M., M. Sadeghizadeh, F. Najafi, S. S. Arab, & H. Mobasheri. 2016. Impact of heat shock step on bacterial transformation efficiency. Mol. Biol. Res. Commun. 5:257-261.

Rahmen, N., C. D. Schlupp, H. Mitsunaga, A. Fulton, T. Aryani, L. Esch, U. Schaffrath, E. Fukuzaki, K. E. Jaeger, & J. Büchs. 2015. A particular silent codon exchange in a recombinant gene greatly influences host cell metabolic activity. Microb. Cell. Fact. 14:156. https://doi.org/10.1186/s12934-015-0348-8

Ramirez, O., R. Zamora, G. Espinosa, E. Merino, F. Bolivar, & R. Quintero. 1994. Kinetic study of penicillin acylase production by recombinant E. coli in batch cultures. Process Biochem. 29:197-206. https://doi.org/10.1016/0032-9592(94)85004-6

Raveendran, S., B. Parameswaran, S. B. Ummalyma, A. Abraham, A. K. Mathew, A. Madhavan, S. Rebello, & A. Pandey. 2018. Applications of microbial enzymesin food industry. Food Technol. Biotechnol. 56:16-30. https://doi.org/10.17113/ftb.56.01.18.5491

Razali, R., C. Budiman, K. A. Kamaruzaman, & V. K. Subbiah. 2021. Soluble expression and catalytic properties of codon-optimized recombinant bromelain from MD2 pineapple in Escherichia coli. Protein J. 40:406-418. https://doi.org/10.1007/s10930-021-09974-9

Rehan, F., N. Ahemada, & M. Gupta. 2019. Casein nanomicelle as an emerging biomaterial-A comprehensive review. Colloids Surf. B: Biointerfaces. 179:280-292. https://doi.org/10.1016/j.colsurfb.2019.03.051

Remmert, M., A. Biegert, A. Hauser, & J. Soding. 2011. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods. 9:173-175. https://doi.org/10.1038/nmeth.1818

Roeters, S. J., A. Iyer, G. Pletikapić, V. Kogan, V. Subramaniam, & S. Woutersen. 2017. Evidence for intramolecular antiparallel beta-sheet structure in alpha-synuclein fibrils from a combination of two-dimensional infrared spectroscopy and atomic force microscopy. Sci. Rep. 7:4105. https://doi.org/10.1038/srep41051

Rohin, M. A. K., A. Bakar, C. Abdullah, & A. M. Ali. 2012. Antibacterial activity of flesh and peel methanol fractions of red pitaya, white pitaya and papaya on selected food microorganisms. Int. J. Pharm. Pharm. Sci. 4:185-190.

Rosano, G. L., & E. A. Ceccarelli. 2014. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5:172. https://doi.org/10.3389/fmicb.2014.00172

Shin, W. H., X. Kang, J. Zhang, & D. Kihara. 2017. Prediction of local quality of protein structure models considering spatial neighbors in graphical models. Sci. Rep. 7:40629. https://doi.org/10.1038/srep40629

Singh, R., A. Mittal, M. Kumar, & P. K. Mehta. 2016. Microbial proteases in commercial applications. J. Pharm. Chem. Biol. Sci. 4:365-374.

Singh, R., M. Kumar, A. Mittal, & P. K. Mehta. 2016. Microbial enzymes: Industrial progress in 21st century. 3 Biotech 6:174. https://doi.org/10.1007/s13205-016-0485-8

Sulthoniyah, S. T. M., Hardoko, & H. Nursyam. 2015. Characterization of extracellular protease lactic acid bacteria from shrimp paste. J. Life Sci. Biomed. 5:01-05.

Waterhouse, A., M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F. T. Heer, T.A.P. de Beer, C. Rempfer, L. Bordoli, R. Lepore, & T. Schwede. 2018. SWISS- MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46:W296-W303. https://doi.org/10.1093/nar/gky427

Watson, R. J., I. Schildkraut, B. Q. Qiang, S. M. Martin, & L. P. Visentin. 1982. NdeI: A restriction endonuclease from Neisseria denitrificans which cleaves DNA at 5’-CATATG-3’ sequences. Febs letters. 150:114-116. https://doi.org/10.1016/0014-5793(82)81315-X

Yaraguppi, D. A., B. B. Udapudi, L. R. Patil, V. S. Hombalimath, & A. R. Shet. 2012. In-silico analysis for predicting protein ligand interaction for snake venom protein. J. Adv. Bioinforma. Appl. Res. 3:345-356.

Authors

M. Yusuf
m.yusufagp0912@gmail.com (Primary Contact)
C. Budiman
I. I. Arief
C. Sumantri
Yusuf, M. ., Budiman, C., Arief, I. I., & Sumantri, C. (2021). Synthetic Gene-Based Heterologous Expression, Proteolytic, and Structural Characterization of Caseinolytic Protease of Lactobacillus plantarum IIA-1A5. Tropical Animal Science Journal, 44(4), 520-530. https://doi.org/10.5398/tasj.2021.44.4.520

Article Details

How to Cite

Yusuf, M. ., Budiman, C., Arief, I. I., & Sumantri, C. (2021). Synthetic Gene-Based Heterologous Expression, Proteolytic, and Structural Characterization of Caseinolytic Protease of Lactobacillus plantarum IIA-1A5. Tropical Animal Science Journal, 44(4), 520-530. https://doi.org/10.5398/tasj.2021.44.4.520