Detection of Tree Cover Dynamic on Belitung Island using Random Forest Regression

Najla Natasya Aurellia(1) , Tubagus Nur Rahmat Putra(2) , Qashdina Saimima Wakano(3) , Ananta Fikri Ramadya(4) , Rania Alifa Desenaldo(5) , Irwan Ary Dharmawan(6)
(1) Department of Geophysics, University of Padjadjaran, Indonesia,
(2) Department of Geophysics, University of Padjadjaran, Indonesia,
(3) Department of Geophysics, University of Padjadjaran, Indonesia,
(4) Department of Geophysics, University of Padjadjaran, Indonesia,
(5) Department of Civil Engineering, Geo and Environmental Sciences, Karlsruhe Institute of Technology, Germany,
(6) Department of Geophysics, University of Padjadjaran, Indonesia

Abstract

Belitung Island faces a series of interconnected environmental problems, particularly in forest conservation. Protected forest areas play a crucial role in supporting life but their sustainability is threatened by human activities such as mining exploitation and forest conversion for plantations. Therefore, protecting and restoring protected forest areas are priorities for maintaining the ecosystem's sustainability on Belitung Island. An evaluation was conducted to assess the ecological conditions of conservation areas on Belitung Island by visualizing changes in protected land cover to assist conservation efforts. In this study, the evaluation system for vegetation cover conditions on Belitung Island and Gunung Lalang Grand Forest Park used random forest (RF) regression algorithms and remote sensing data. Satellite image data were used to determine the extent of vegetation cover on Belitung Island, utilizing combinations of bands from Landsat Satellites and MODIS Percent Tree Cover. Satellite images from 2013 to 2023 were used for comparison. This evaluation revealed several class changes in vegetation cover on Belitung Island based on percent tree cover classification over the years serving as an evaluation of land use in the areas under review. The R-squared value of 0.73 indicated that the samples used to predict land cover demonstrated a relatively high level of accuracy. This study could serve as an effective means of predicting and estimating large-scale vegetation changes, as well as a monitoring tool for conservation areas on Belitung Island.

Full text article

Generated from XML file

References

Aini, N., & Sukojo, B. M. (2016). Pemanfaatan Data Landsat-8 dan MODIS untuk Identifikasi Daerah Bekas Terbakar Menggunakan Metode NDVI. JURNAL TEKNIK ITS.

Breiman, L. (2001). Random Forests. Machine learning, 45(1), 5-32. Springer.a

Bryan, B. A., Kwiatkowsk, E. J., Meister, G., & McClain, C. R. (2008). Moderate Resolution Imaging Spectroradiometer onTerra: limitations for ocean color applications. Journal of Applied Remote Sensing.

Chen, B., Huang, B., & Xu, B. (2017). Multi-source Remotely Sensed Data Fusion for Improving Land Cover Classification. ISPRS Journal of Photogrammetry and Remote Sensing, 27-39.

Cutillas, P. P., Navarro, A. P., García, C. C., Zema, D. A., & Álvarez, J. P. (2023). What is going on within google earth engine? A systematic review and meta-analysis. Remote Sensing Applications: Society and Environment.

Chin, W. W. (1998). The Partial Least Squares Approach to Structural Equation Modeling. Modern Methods for Business Research, 295, 336

Dutta , R. K., Gnananandarao, T., & Sharma , A. (2019). Application of Random Forest Regression in the Prediction of Ultimate Bearing Capacity of Strip Footing Resting on Dense Sand Overlying Loose Sand Deposit. Journal of Soft Computing in Civil Engineering, 28-40.

Effendi, R. (2014). Buku Laporan Status Lingkungan Hidup Daerah Provinsi Kepulauan Bangka Belitung. Bangka Belitung: Pemerintah Provinsi Kepulauan Bangka Belitung.

Fahrezy, N., Hendargi, F., & Widyasamratri , H. (2021). ARAHAN PENGEMBANGAN WILAYAH BERBASIS TRUKTUR GEOLOGI KAWASAN DI PULAU BELITUNG. Journal of Urban and Regional Planning, 29-36.

Goward, S. N., Masek, J. G., Williams, D. L., Irons, J. R., & Thompson, R. T. (2001). The Landsat 7 mission: Terrestrial research and applications for the 21st century. Remote Sensing of Environment, 3-12.

Indonesian Law No. 41 Article 1 of 1999 on Forestry

Indonesian Law Number 41Articles 6 and 7 of 1999 on concerning Forest

Lawrence, R.L., Wood, S.D., Sheley, R.L., 2006. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (randomForest). Remote Sens. Environ. 100, 356–362.

Mahesti, T., Umar, E., Ariadi, A., Prasetyo, S. Y., & Fibriani, C. (2020). Identifikasi Perubahan Tutupan Vegetasi dan Curah Hujan Kabupaten Semarang Menggunakan Citra Saltelit Lansat 8. Indonesian Journal of Modeling and Computing, 30-42.

Mohammad, H., Wahyu, C. (2023). Prediction of River Water Quality Using Machine Learning Methods: Ciliwung River Case Study. Jurnal Teknologi Lingkungan Brin dan Ilmu Komputer Universitas Indonesia

Montoya, A. V., Burbano, N. M., Mero, P. C., Torres, H. R., Sadeck, L., & Adami, M. (2023). Google Earth Engine: A Global Analysis and Future Trends. Journal of Remote Sensing.

Muchsin, F., Fibriawati, L., & Pradhono, K. A. (2017). MODEL KOREKSI ATMOSFER CITRA LANDSAT-7 (ATMOSPHERIC CORRECTION MODELS OF LANDSAT-7 IMAGERY). Jurnal Penginderaan Jauh, 101-110.

Hardjasoemantri, K. (2002). Hukum Tata Lingkungan. Yogyakarta : Gajah Mada University Press. Cetakan ketujuhbelas

Haryanto, A. (2022). PEMETAAN PERUBAHAN LUASAN HUTAN MANGROVE DENGAN MENGUNAKAN CITRA SATELIT LANDSAT 8 DI PULAU KARAMPUANG KABUPATEN MAMUJU SULAWESI BARAT. Journal of Indonesian Tropical Fisheries, 139-148.

Mahesti, T., Umar, E., Ariadi, A., Prasetyo, S. Y., & Fibriani, C. (2020). Identifikasi Perubahan Tutupan Vegetasi dan Curah Hujan Kabupaten Semarang Menggunakan Citra Saltelit Lansat 8. Indonesian Journal of Modeling and Computing, 30-42.

Montoya, A. V., Burbano, N. M., Mero, P. C., Torres, H. R., Sadeck, L., & Adami, M. (2023). Google Earth Engine: A Global Analysis and Future Trends. Journal of Remote Sensing.

Muchsin, F., Fibriawati, L., & Pradhono, K. A. (2017). MODEL KOREKSI ATMOSFER CITRA LANDSAT-7 (ATMOSPHERIC CORRECTION MODELS OF LANDSAT-7 IMAGERY). Jurnal Penginderaan Jauh, 101-110.

Mutoffar, M. M., Naseer, M., & Fadillah, A. (2022). Klasifikasi Kualitas Air Sumur Menggunakan Algoritma Random Forest. Jurnal Ilmiah Nasional Riset Aplikasi dan Teknik Informatika. Vol. 04 (2): 138-146.

Nagendra, H., Unnikrishnan, H., Sen, S., 2013c. Villages in the city: spatial and temporal heterogeneity in rurality and urbanity in Bangalore, India. Land 3, 1–18.

Natasyah, F., Silvia, Y., Rizki, A., Giant, A., Popy, I. (2022). Klasifikasi Citra Satelit dengan Metode Random Forest Untuk Observasi Dinamika Lanskap Ekosistem Kabupaten Sijunjung. Department Geografi, Universitas Negeri Padang.

Pirwanda, F. & Pirngadie, B. H. (2015). Dampak Kegiatan Tambang Timah Inkonvensional terhadap Perubahan Guna Lahan di Kabupaten Belitung. Jurnal Planologi Unpas. Vol. 2 (3): 177-194.

Prasetyo, N. N., Sasmito, B., & Prasetyo, Y. (2017). ANALISIS PERUBAHAN KERAPATAN HUTAN MENGGUNAKAN METODE NDVI DAN EVI PADA CITRA SATELIT LANDSAT 8 TAHUN 2013 DAN 2016. Jurnal Geodesi Undip.

Radandima, G. U. E. & Beeh, Y. R. (2022). Identification of Land Fire Risk Areah with Random Using Landsat Image Data 8 OLI. International Journal of Natural Science and Engineering. Vol. 6 (2): 64-74.

Roy, D. P., Kovalskyy, V., Zhang, H., Vermote, É. F., Yan, L., Sathyachandran, S. S., & Egorov, A. V. (2016). Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 57-70.

Said, N. I. (2014). Teknologi Pengolahan Air Asam Tambang Batu Bara “Alternatif Pemilihan Teknologi”. JAI. Vol. 7 (2): 119-138.

Sandika, A. M., Megantara, E. N., & Husodo, T. (2018). Analysis of Biodiversity Potency In Gunung Lalang Forest Park,Belitung Regency. Ecodevelopment Journal, 18-23.

Sulista. (n,n). Pemulihan dan Pemanfaatan Lahan Bekas Penambangan Timah. https://bappeda.babelprov.go.id/content/pemulihan-dan-pemanfaatan-lahan-bekas-penambangan-timah#:~:text=Kegiatan%20penambangan%20timah%20di%20Indonesia,memulai%20eksploitasi%20pada%20tahun%201973 .

Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco , B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. Journal of Photogrammetry and Remote Sensing, 152-170.

Wening, A., Afif, J., Fikriya, N., Galih, P. (2021). PERBANDINGAN METODE OTOMATISASI SUPERVISED MACHINE LEARNING TERHADAP PERUBAHAN TUTUPAN LAHAN. Teknik Geodesi Undip.

Wilya , W., At , M., & Lidiawati, I. (2014). Comperison Of Forest Area Before And After The Proposed Plan Of The Provincial Spatial (Case Study At Bangka Belitung Island Province. Jurnal Nusa Sylva.

Zulfajri, Danoedoro, P., & Murti, S. H. (2021). KLASIFIKASI TUTUPAN LAHAN DATA LANDSAT-8 OLI MENGGUNAKAN METODE RANDOM FOREST. Jurnal Penginderaan Jauh Indonesia, 03.

Authors

Najla Natasya Aurellia
najla.n2381@gmail.com (Primary Contact)
Tubagus Nur Rahmat Putra
Qashdina Saimima Wakano
Ananta Fikri Ramadya
Rania Alifa Desenaldo
Irwan Ary Dharmawan
[1]
Aurellia, N.N. et al. 2025. Detection of Tree Cover Dynamic on Belitung Island using Random Forest Regression . Media Konservasi. 30, 2 (May 2025), 250. DOI:https://doi.org/10.29244/medkon.30.2.250.

Article Details

How to Cite

[1]
Aurellia, N.N. et al. 2025. Detection of Tree Cover Dynamic on Belitung Island using Random Forest Regression . Media Konservasi. 30, 2 (May 2025), 250. DOI:https://doi.org/10.29244/medkon.30.2.250.