Penggunaan Indeks Vegetasi Berbasis Citra Multispektral Drone Untuk Deteksi Kondisi Pertumbuhan Padi Sawah

Penulis

  • Wahyu Iskandar Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian IPB, Jl. Meranti Kampus IPB Darmaga Bogor 16680; Pusat Pengkajian Perencanaan dan Pengembangan Wilayah (P4W) IPB, Kampus IPB Baranang Siang, Kota Bogor 16143
  • Almawardi Muhammad PT Hatfiled Indonesia, Jl. Siliwangi No.46 Unit B5 - B7, Sukasari, Bogor Timur, Bogor City, West Java 16131
  • Khursatul Munibah Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian IPB, Jl. Meranti Kampus IPB Darmaga Bogor 16680
  • Baba Barus Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian IPB, Jl. Meranti Kampus IPB Darmaga Bogor 16680; Pusat Pengkajian Perencanaan dan Pengembangan Wilayah (P4W) IPB, Kampus IPB Baranang Siang, Kota Bogor 16143

DOI:

https://doi.org/10.29244/jitl.27.2.115-122

Kata Kunci:

drone, NDWI, NDVI, NDRE, pemantauan sawah

Abstrak

Deteksi kondisi tanaman padi sawah beririgasi penting dilakukan untuk mengantisipasi kegagalan panen akibat kekeringan dan banjir. Namun pengamatan kondisi padi sawah secara konvensional menyisakan permasalahan kompleks seperti bias pengamat, data berbasis titik, dan cakupan pengamat yang terbatas. Pengamatan dengan bantuan teknologi kamera multispektral (MS) menggunakan wahana tanpa awak (UAV/Drone) dapat membantu mengatasi masalah-masalah di atas, meskipun penerapannya belum banyak dikembangkan. Penelitian ini bertujuan untuk mengevaluasi efektivitas tiga indeks vegetasi NDWI, NDVI, and NDREberbasis citra mutispektral berbasis drone dalam memantau kondisi tanaman padi serta mendeteksi dampak kekeringan dan penggenangan terhadap pertumbuhannya. Pengamatan dilakukan tiga kali pada fase vegetatif (10 HST, generatif (45 HST), dan pematangan (80 HST) terhadap padi varietas Ciherang dan IR64. Tanaman padi diberi perlakuan pengairan yaitu pengeringan, penggenangan, dan kontrol. Hasil penelitian menunjukkan bahwa indeks NDRE memiliki respon terhadap vegetasi yang kurang baik pada pertumbuhan fase vegetatif, tetapi meningkat lebih baik pada fase pertumbuhan generatif dan pematangan. Sementara itu, pertumbuhan gulma di antara tanaman padi menunjukkan pengaruh terhadap nilai NDVI dan NDWI terutama di perlakuan kering, sehingga nilai tersebut kurang dapat diandalkan.

Unduhan

Data unduhan tidak tersedia.

Referensi

Abdulrachman, Sarlan, S. Karsono, M.Y. Samaullah, H. Sembiring, B.S. Efendi, A. Dirdjoseputro dan E.S. Noor. 2011. Prosedur Operasional Standar Budi Daya Padi Sawah. Balai Besar Penelitian Tanaman Padi Pusat Penelitian dan Pengembangan Tanaman Pangan. Balai Penelitian dan pengembangan Pertanian Kementerian Pertanian.

Boiarskii, B. and H. Hasagewa. 2019. Comparison of NDVI and NDRE indices to detect differences in vegetation and chlorophyll content. J. Mech. Cont. & Math. Sci., 4(1): 20–29. https://doi.org/10.26782/jmcms.spl.4/2019.11.00003

Elliott, J., D. Deryng, C. Müller, K. Frieler, M. Konzmann, D. Gerten, M. Glotter, M. Flörke, Y. Wada, N. Best, S. Eisner, B.M. Fekete, C. Folberth, I. Foster, S.N. Gosling, I. Haddeland, N. Khabarov, F. Ludwig, Y. Masaki, S. Olin, C. Rosenzweig, A.C. Ruane, Y. Satoh, E. Schmid, T. Stacke, Q. Tang and D. Wisser. 2013. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. U.S.A., 111(9): 3239-3244. https://doi.org/10.1073/pnas.1222474110

Gao, B.C. 1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3): 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3

Gitelson, A.A., Y.J. Kaufman and M.N. Merzlyak. 2003. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3): 289–298. https://doi.org/10.1016/S0034-4257(96)00072-7

Guermazi, E., M. Bouaziz and M. Zairi. 2016. Water irrigation management using remote sensing techniques: a case study in Central Tunisia. Environmental Earth Science, 75(202). https://doi.org/10.1007/s12665-015-4804-x

Haboudane, D., J.R. Miller, E. Pottey, P.J. Zarco-Tejada and I.B. Strachan. 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3): 337–352. https://doi.org/10.1016/j.rse.2003.12.013

Ikhwani. 2013. Ketahanan varietas padi toleran rendaman dan responnya terhadap pemupukan. Jurnal Lahan Suboptimal, 2(1): 1-13. https://doi.org/10.33230/JLSO.2.1.2013.30

Khuzaimah, Z., N.M. Nawi, S.N. Adam, B. Kalantar, O.J. Emeka and N. Ueda. 2022. Application and Potential of Drone Technology in Oil Palm Plantation: Potential and Limitations. Journal of Sensors, 2022. https://doi.org/10.1155/2022/5385505

Madiyuanto, Rahmawaty and H. Santoso. 2023. Mapping of Leaf Nutrient Content Using Multispectral Imagery in Oil Palm Based on Unmanned Aerial Vehicles. Jurnal Penelitian Kelapa Sawit, 31(2): 124-138. https://doi.org/10.22302/iopri.jur.jpks.v31i2.236

Marsujitullah, M., D.A. Kaligis, and F.X. Manggau. 2023. Health Analysis of Rice Plants Based on the Normalized Difference Vegetation Index (NDVI) Value in Image of Unmanned Aircraft (Case Study of Merauke - Papua Selatan). Engineering and Technology Journal, 8(2): 1986–1991. https://doi.org/10.47191/etj/v8i2.04

Okamoto, Y., C. Mccarthy, A. Mahinda, W. Iskandar, A.K. Mishra and S. Funakawa. 2017. Applicability of the Multicopter (Unmanned Aerial Vehicle) and Aerial Photograph in the Kyoto University Experimental Forest. [Poster]. International Symposium on Global Environmental Studies Education and Research in Asia. November 13-15, 2016, Bangkok, Thailand.

Rouse, J.W., R.H. Haas, J.A. Schell and D.W. Deering. 1973. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ., 351:309.

Saud, S., D. Wang, S. Fahad, H.F. Alharby, A.A. Bamagoos, A. Mjrashi, N.M. Alabdallah, S.S. AlZahrani, H. AbdElgawad, M. Adnan, R.Z. Sayyed, S. Ali and S. Hassan. 2022. Comprehensive Impacts of Climate Change on Rice Production and Adaptive Strategies in China. Front. Microbiol. 13: 926059. https://doi.org/10.3389/fmicb.2022.926059

Setiyono, T.D., et al. 2018. Rice Crop Manager: An integrated decision support system for site-specific nutrient management. Field Crops Research, 220, 12–21.

Vergara, B.S. 1994. A Farmer’s Primer on Growing Rice. IRRI. Manila (PH).

Yengoh, G.T., D. Dent, L. Olsson, A.E. Tengberg, C.J. Tucker III. 2015. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales. Springer. New York(AS).

Zhang, C. and J.M. Kovacs. 2012. The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6): 693–712. https://doi.org/10.1007/s11119-012-9274-5

Zhou, Y., J. Dong, X. Xiao, T. Xiao, Z. Yang, G. Zhao, Z. Zou and Y. Qin. 2017. Open surface water mapping algorithms: a comparison of water-related spectral indices and sensors. Water, 9(4): 256-272. https://doi.org/10.3390/w9040256

Unduhan

Diterbitkan

2025-10-01

Cara Mengutip

Iskandar, W., Muhammad, A., Munibah, K., & Barus, B. (2025). Penggunaan Indeks Vegetasi Berbasis Citra Multispektral Drone Untuk Deteksi Kondisi Pertumbuhan Padi Sawah. Jurnal Ilmu Tanah Dan Lingkungan, 27(2), 115-122. https://doi.org/10.29244/jitl.27.2.115-122