Soil Aggregate Stability Index on Agricultural, Plantation, and Forest Lands

Penulis

  • Yayat Hidayat Department of Soil Science and Land Resources, Faculty of Agriculture IPB University, Bogor 16680
  • Dwi Putro Tejo Baskoro Department of Soil Science and Land Resources, Faculty of Agriculture IPB University, Bogor 16680
  • Wahyu Purwakusuma Department of Soil Science and Land Resources, Faculty of Agriculture IPB University, Bogor 16680
  • Mariana Sella Siregar Alumni of Department of Soil Science and Land Resources, Faculty of Agriculture IPB University, Bogor 16680
  • Muhammad Haris Achyar Ramadhi Alumni of Department of Soil Science and Land Resources, Faculty of Agriculture IPB University, Bogor 16680

DOI:

https://doi.org/10.29244/jitl.27.2.56-62

Kata Kunci:

hutan, indek kestabilan agregat tanah, pertanian konservasi, kebun sawit, kebun karet,

Abstrak

Indek kestabilan agregat tanah merupakan salah satu indikator kunci kualitas fisik tanah khususnya terkait dengan kemampuan tanah dalam meresapkan air kedalam tanah serta ketahanan tanah terhadap daya percik air hujan dan daya gerus aliran permukaan pada proses erosi tanah. Penelitian ditujukan untuk menentukan kriteria kelas indek kestabilan agregat tanah metoda pengayakan kering dan basah pada tipe ayakan OSK 10701 dan mengidentifikasi kestabilan agregat tanah pada lahan pertanian, kebun dan hutan disekitar kampus IPB Dramaga.  Transformasi kriteria kelas kestabilan agregat tanah dari tipe ayakan konvensional kedalam tipe ayakan OSK 10701 memberikan hasil yang sangat baik dengan koefisien determinasi (R2) 0.89.  Indek kestabilan agregat tanah berbeda nyata antar jenis tanah dan antar penggunaan lahan. Tanah Podsolik Jasinga memiliki kestabilan agregat yang lebih tinggi dibandingkan dengan tanah Podsolik Dramaga, Regosol Dramaga dan Latosol Dramaga baik pada lapisan atas (0-20 cm) maupun lapisan bawah (20-40 cm).  Hutan tanaman mempunyai indek kestabilan agregat yang lebih baik dibandingkan dengan lahan pertanian konservasi, lahan pertanian konvensional, kebun karet dan kebun kelapa sawit.  Perbedaan indeks kestabilan antar penggunaan lahan berkaitan erat dengan kadar bahan organik tanah.  Walaupun tanahnya lebih padat/kompak tanah pada kebun kelapa sawit dan kebun karet mempunyai indek kestabilan yang lebih rendah dan tergolong tidak stabil.

Unduhan

Data unduhan tidak tersedia.

Biografi Penulis

  • Yayat Hidayat, Department of Soil Science and Land Resources, Faculty of Agriculture IPB University, Bogor 16680
    Department of Education

Referensi

Angers, D.A. and M.R. Carter. 2020. Aggregation and organic matter storage in cool, humid agricultural soils. in Carter, M.R., & B.A. Stewart (Eds.). Structure and organic matter storage in agricultural soils (eBook Published.). CRC Press. Pp. 193–211. https://doi.org/10.1201/9781003075561-9

Baskoro, D.P.T. and H.D. Manurung. 2005. Effect of measurement method and wet sieving time on index of soil aggregate stability. Jurnal Tanah dan Lingkungan, 7(2): 54-57. https://doi.org/10.29244/jitl.7.2.54-57

Castrignanò, A. and M. Stelluti. 1998. Fractal geometry and geostatistics for describing the field variability of soil aggregation. Journal of Agricultural Engineering Research, 73(I): 13-18. https://doi.org/10.1006/jaer.1998.0385

Costa, O.Y.A., J.M. Raaijmakers and E.E. Kuramae. 2018. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Frontiers in Microbiology, 9(2018): 1636. https://doi.org/10.3389/fmicb.2018.01636

Doran, J.W., A.J. Jones and T.B. Parkin. 1996. Quantitative indicators of soil quality: A minimum data set. In Doran, J.W. and A.J. Jones (Eds.). Methods for assessing soil quality. Soil Science Society of America Special Publication. https://doi.org/10.2136/sssaspecpub49.c2

Dou, Y., Y. Yang, S. An and Z. Zhu. 2020. Effects of different vegetation restoration measures on soil aggregate stability and erodibility on the Loess Plateau, China. Catena, 185(2020): 104294. https://doi.org/10.1016/j.catena.2019.104294

Edwards, A.P. and J.M. Bremner. 1967. Microaggregates in soils. European Journal of Soil Science, 18(1): 64–73. https://doi.org/10.1111/j.1365-2389.1967.tb01488.x

Kemper, W.D. and R.C. Rosenau. 1986. Aggregate stability and size distribution. In A. Klute (Ed.). Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods. 2nd ed. ASA Inc. and SSSA Inc. Publisher. Madison, Wisconsin. p. 425-442. https://doi.org/10.2136/sssabookser5.1.2ed.c17

Kurnia, U., F. Agus, A. Adimihardja dan A. Dariah. 2006. Sifat Fisik Tanah dan Metoda Analisisnya. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. Departemen Pertanian RI.

Lal, R. 2016. Soil health and carbon management. Food and Energy Security, 5(4): 212–222. https://doi.org/10.1002/fes3.96

Li, Y., Z. Ma, Y. Liu, Z. Cui, Q. Mo, C. Zhang, H. Sheng, W. Wang and Y. Zhang. 2023. Variation in soil aggregate stability due to land use changes from alpine grassland in a high-altitude watershed. Land, 12(2): 393. https://doi.org/10.3390/land12020393

Lynch, J.M. and E. Bragg. 1985. Microorganisms and soil aggregate stability. In Stewart, B.A. (Ed.), Advances in soil science, Vol. 2. Springer, New York, NY. pp. 133–171. https://doi.org/10.1007/978-1-4612-5088-3_3

Moncada, M.P., D. Gabriels, W. Cornelis and D. Lobo. 2015. Comparing aggregate stability tests for soil physical quality indicators. Land Degradation and Development, 26: 843-352. https://doi.org/10.1002/ldr.2225

Niewczas, J. and B. Witkowska-Walczak. 2003. Index of Soil Aggregates Stability as Linear Fraction Value of Transition Matrix Elements. Soil and Tillage Research, 70(2):121-130. https://doi.org/10.1016/S0167-1987(02)00155-1

Papadopoulos, A., N.R.A. Bird, A.P. Whitmore, S.J. Mooney. 2009. Investigating the effects of organic and conventional management on soil aggregate stability using X-ray computed tomography. European Journal of Soil Science, 60(3): 360–368. https://doi.org/10.1111/j.1365-2389.2009.01126.x

Poirier, V., C. Roumet and A.D. Munson. 2018. The root of the matter: Linking root traits and soil organic matter stabilization processes. Soil Biol. Biochem, 120(2018): 246–259. https://doi.org/10.1016/j.soilbio.2018.02.016

Rillig, M.C., S.F. Wright and V.T. Eviner. 2002. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant and Soil, 238(2002): 325–333. https://doi.org/10.1023/A:1014483303813

Six, J., H. Bossuyt, S. Degryze and K. Denef. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1): 7–31. https://doi.org/10.1016/j.still.2004.03.008

Spohn, M. and L. Giani. 2010. Water-stable aggregates, glomalin-related soil protein, and carbohydrates in a chronosequence of sandy hydromorphic-soils. Soil Biology and Biochemistry, 42(9): 1505–1511. https://doi.org/10.1016/j.soilbio.2010.05.015

Tisdall, J.M. and J.M. Oades. 1982. Organic matter and water-stable aggregates in soils. European Journal of Soil Science, 33(2): 141–163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x

Diterbitkan

2025-10-01

Cara Mengutip

Hidayat, Y., Baskoro, D. P. T., Purwakusuma, W., Siregar, M. S., & Ramadhi, M. H. A. (2025). Soil Aggregate Stability Index on Agricultural, Plantation, and Forest Lands. Jurnal Ilmu Tanah Dan Lingkungan, 27(2), 56-62. https://doi.org/10.29244/jitl.27.2.56-62