Section Research Articles

Compressive Strength Performance of Rice Husk Ash-Based Geopolymer Concrete with Fly Ash as a Secondary Material

Vol. 10 No. 2: October 2025:

Muhammad Ramdhan Olii (1), Maxidin Saliko (2), Nurhayati Doda (3), Sartan Nento (4), Rizky Selly Nazarina Olii (5)

(1) Universitas Gorontalo, Indonesia
(2) Department of Civil Engineering, Engineering Faculty, Universitas Gorontalo, Indonesia
(3) Department of Civil Engineering, Engineering Faculty, Universitas Gorontalo, Indonesia
(4) Department of Civil Engineering, Engineering Faculty, Universitas Gorontalo, Indonesia
(5) Department of Architecture, Engineering Faculty, Universitas Gorontalo, Indonesia
Fulltext View | Download

Abstract:

Concrete production heavily relies on cement, whose manufacturing significantly contributes to carbon emissions, necessitating alternative materials for sustainable construction. This study investigates the effect of varying compositions of rice husk ash (RHA) and fly ash on the compressive strength and workability of concrete. Five variations of RHA and fly ash ratios (80:20, 75:25, 70:30, 65:35, and 60:40) were tested to identify the optimal mixture. The results show that the 60:40 ratio produced the highest compressive strength of 16.66 MPa and a slump value of 9.5 cm, indicating enhanced workability and mechanical performance. This finding highlights the complementary roles of RHA, which contributes to pozzolanic activity, and fly ash, which enhances hydration and cementitious properties. Excessive RHA content, however, leads to reduced strength due to its lower reactivity. The exponential trend observed in the compressive strength characteristics (R² = 0.9081) confirms the nonlinear relationship between material composition and performance. This research aligns with previous studies demonstrating the benefits of using industrial by-products in concrete. The findings underscore the potential of combining RHA and fly ash as an eco-friendly solution for high-strength concrete, promoting waste utilization and sustainability in the construction industry. Future studies should explore long-term durability and scaling for industrial applications.

References

[1] M. R. Olii, A. S. Hidayat, M. Saliko, T. Santoso, M. A. Hippy, and R. Pakaya, “Environmentally Friendly Concrete Using Waste Glass Powder (WGP) As a Partial Substitute of Cement,” J. Tek. Sipil, vol. 12, no. 2, pp. 140–146, 2023.

[2] S. S. Hossain, P. K. Roy, and C. J. Bae, “Utilization of waste rice husk ash for sustainable geopolymer: A review,” Constr. Build. Mater., vol. 310, no. August, p. 125218, 2021, doi: 10.1016/j.conbuildmat.2021.125218.

[3] M. Amran, S. Debbarma, and T. Ozbakkaloglu, “Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties,” Constr. Build. Mater., vol. 270, p. 121857, 2021, doi: 10.1016/j.conbuildmat.2020.121857.

[4] S. Barbhuiya, F. Kanavaris, B. B. Das, and M. Idrees, “Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development,” J. Build. Eng., vol. 86, no. September 2023, p. 108861, 2024, doi: 10.1016/j.jobe.2024.108861.

[5] L. Valentini, “Sustainable sourcing of raw materials for the built environment,” Mater. Today Proc., no. July, pp. 26–29, 2023, doi: 10.1016/j.matpr.2023.07.308.

[6] M. R. Olii, A. A. Wahab, I. Ichsan, R. A. Djau, and S. Nento, “Beton Hijau Menggunakan Fly ash sebagai Subtitusi Parsial Semen,” Siklus J. Tek. Sipil J. Tek. Sipil, vol. 9, no. 1, pp. 11–20, 2023.

[7] M. R. Olii, I. . Poe, I. Ichsan, and A. Olii, “Limbah Kaca Sebagai Penganti Sebagian Agregat Halus Untuk Beton Ramah Lingkungan,” Teras J., vol. 11, no. 1, pp. 113–124, 2021, doi: http://dx.doi.org/10.29103/tj.v11i1.407.

[8] N. A. A. Al-Jburi, K. J. H. Hasan, N. Azline, and N. Ostovar, “Waste glass as partial replacement in cement - A review,” IOP Conf. Ser. Earth Environ. Sci., vol. 357, no. 1, 2019, doi: 10.1088/1755-1315/357/1/012023.

[9] L. Imtiaz, S. K. Ur Rehman, S. A. Memon, M. K. Khan, and M. F. Javed, “A review of recent developments and advances in eco-friendly geopolymer concrete,” Appl. Sci., vol. 10, no. 21, pp. 1–56, 2020, doi: 10.3390/app10217838.

[10] H. Afrin, N. Huda, and R. Abbasi, “An Overview of Eco-Friendly Alternatives as the Replacement of Cement in Concrete,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1200, no. 1, p. 012003, 2021, doi: 10.1088/1757-899x/1200/1/012003.

[11] W. K. Part, M. Ramli, and C. B. Cheah, “An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products,” Constr. Build. Mater., vol. 77, pp. 370–395, 2015, doi: 10.1016/j.conbuildmat.2014.12.065.

[12] F. Farooq et al., “Geopolymer concrete as sustainable material: A state of the art review,” Constr. Build. Mater., vol. 306, no. August, p. 124762, 2021, doi: 10.1016/j.conbuildmat.2021.124762.

[13] K. H. Mo, U. J. Alengaram, and M. Z. Jumaat, “Structural performance of reinforced geopolymer concrete members: A review,” Constr. Build. Mater., vol. 120, pp. 251–264, 2016, doi: 10.1016/j.conbuildmat.2016.05.088.

[14] N. Shehata, O. A. Mohamed, E. T. Sayed, M. A. Abdelkareem, and A. G. Olabi, “Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials,” Sci. Total Environ., vol. 836, no. April, p. 155577, 2022, doi: 10.1016/j.scitotenv.2022.155577.

[15] F. N. Okoye, “Geopolymer binder: A veritable alternative to Portland cement,” Mater. Today Proc., vol. 4, no. 4, Part E, pp. 5599–5604, 2017, doi: https://doi.org/10.1016/j.matpr.2017.06.017.

[16] P. Risdanareni, P. Puspitasari, and E. J. Jaya, “Chemical and Physical Characterization of Fly Ash as Geopolymer Material,” in MATEC Web of Conferences, 2017. doi: 10.1051/matecconf/20179701031.

[17] H. K. Shehab, A. S. Eisa, and A. M. Wahba, “Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement,” Constr. Build. Mater., vol. 126, pp. 560–565, 2016, doi: 10.1016/j.conbuildmat.2016.09.059.

[18] A. M. Putra, S. Reni, and H. Maizir, “Studi Eksperimental Sifat Mekanis Bata Ringan CLC Dengan Penambahan Fly Ash,” Siklus J. Tek. Sipil, vol. 10, no. 2, pp. 215–227, 2024, doi: https://doi.org/10.31849/siklus.v10i2.21182.

[19] S. K. Das, A. Adediran, C. R. Kaze, M. Mustakim, S., and N. Leklou, “Production, characteristics, and utilization of rice husk ash in alkali activated materials: An overview of fresh and hardened state properties,” Constr. Build. Mater., vol. 345, no. July, p. 128341, 2022, doi: 10.1016/j.conbuildmat.2022.128341.

[20] G. Mounika, M. Priyanka, Y. Rajasri, T. S. Reddy, S. Srinanda, and G. S. Reddy, “Evaluation of Mechanical Characteristics of concrete incorporating Fly Ash and Rice Husk Ash as sustainable alternatives,” E3S Web Conf., vol. 559, 2024, doi: 10.1051/e3sconf/202455904028.

[21] S. A. Zareei, F. Ameri, F. Dorostkar, and M. Ahmadi, “Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: Evaluating durability and mechanical properties,” Case Stud. Constr. Mater., vol. 7, no. October 2016, pp. 73–81, 2017, doi: 10.1016/j.cscm.2017.05.001.

[22] K. Chiranjeevi, M. M. Vijayalakshmi, and T. R. Praveenkumar, “Investigation of fly ash and rice husk ash-based geopolymer concrete using nano particles,” Appl. Nanosci., vol. 13, no. 1, pp. 839–846, 2023, doi: 10.1007/s13204-021-01916-2.

[23] S. Joel, “Compressive strength of concrete using fly ash and rice husk ash: A review,” Civ. Eng. J., vol. 6, no. 7, pp. 1400–1410, 2020, doi: 10.28991/cej-2020-03091556.

[24] D. Hardjito and B. V Rangan, “Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete,” Faculty of Engineering, Curtin University of Technology, Perth, 2005.

[25] P. Duxson, J. L. Provis, G. C. Lukey, and J. S. J. van Deventer, “The role of inorganic polymer technology in the development of ‘green concrete,’” Cem. Concr. Res., vol. 37, no. 12, pp. 1590–1597, 2007, doi: 10.1016/j.cemconres.2007.08.018.

[26] A. Fernández-Jiménez, A. Palomo, and M. Criado, “Alkali-activated fly ash binders: A comparative study between sodium and potassium activators,” Cem. Concr. Res., vol. 36, no. 10, pp. 1980–1986, 2006, doi: 10.1016/j.cemconres.2006.05.012.

[27] A. Sathonsaowaphak, P. Chindaprasirt, and K. Pimraksa, “Use of palm oil fuel ash and rice husk ash in geopolymer concrete,” Waste Manag., vol. 29, no. 2, pp. 539–543, 2009, doi: 10.1016/j.wasman.2008.06.023.

[28] J. Temuujin, A. Minjigmaa, M. Lee, N. Chen-Tan, and A. van Riessen, “Characterization of class F fly ash geopolymer pastes immersed in acid and alkaline solutions,” Cem. Concr. Compos., vol. 31, no. 1, pp. 29–34, 2009, doi: 10.1016/j.cemconcomp.2008.09.001.

[29] T. Van Lam, B. Bulgakov, O. Aleksandrova, O. Larsen, and P. Ngoc Anh, “Effect of rice husk ash and fly ash on the compressive strength of high performance concrete,” E3S Web Conf., vol. 33, pp. 1–13, 2018, doi: 10.1051/e3sconf/20183302030.

[30] M. N. Al-hashem et al., “Predicting the compressive strength of concrete containing,” Materials (Basel)., 2022.

[31] A. H. Insyira et al., “Study of using Coal Fly Ash (CFA) and Rice Husk Ash (RHA) on the Compressive Strength of Geopolymer Concrete,” E3S Web Conf., vol. 426, pp. 3–7, 2023, doi: 10.1051/e3sconf/202342601011.

How to Cite

1.
Compressive Strength Performance of Rice Husk Ash-Based Geopolymer Concrete with Fly Ash as a Secondary Material . J-Sil [Internet]. 2025 Oct. 28 [cited 2025 Dec. 23];10(2):259-66. Available from: https://journal.ipb.ac.id/jsil/article/view/65063