Hanifah Indah Rahmawati (1), Danny Meirawan (2), Sri Rahayu (3), Mochammad Rizal Fauzan (4), Mutiara Nabila Azmi (5), Rafi Zahran Fauzi (6)
Poor air quality in urban areas significantly impacts public health, productivity, and quality of life. Various efforts have been made to address this issue, but many solutions still have limitations, such as low effectiveness, designs that lack portability, and the inability for real time monitoring. This research aims to develop a smart air purifier based on biomimetics and the Internet of Things (IoT) as an innovative solution to improve air quality in urban residences. The device prototype mimics the mechanism of leaf stomata, which naturally regulate the flow of air and gases, thus enabling more optimal clean air circulation. The system can monitor environmental parameters, namely temperature, humidity, air pressure, and Indoor Air Quality (IAQ) Index, in real time using BME680 and MQ-135 sensors, and can be controlled via Google Assistant. Testing was conducted in three locations in West Java Province, Indonesia: Cilame, Cibiru, and Jatinangor. Linear regression analysis was used to evaluate the relationship between environmental variables and air quality. The results showed that the device was able to significantly improve air quality in all locations, especially in Cilame, with air pressure being the dominant factor affecting IAQ (coefficient of determination 0.88). Different from previous research, this device offers advantages in the form of high portability, real time monitoring, and IoT integration, making it a potential sustainable solution for improving the air quality of urban residences.
[1] M. Mustafa, H. S. Sunuh, I. Subagyo, and A. Bungawati, “Pencemaran Udara dan ISPA (Infeksi Saluran Pernapasan Akut),” 2023.
[2] S. Gunawan, H. Hasan, and R. D. W. Lubis, “Pemanfaatan Adsorben dari Tongkol Jagung sebagai Karbon Aktif untuk Mengurangi Emisi Gas Buang Kendaraan Bermotor,” J. Rekayasa Mater. Manufaktur dan Energi, vol. 3, no. 1, pp. 38–47, 2020.
[3] Centers for Disease Control and Prevention and U.S. Department of Housing and Urban Development, Chapter 2: Basic Principles of Healthy Housing. United States, 2006.
[4] T. Z. Maung, J. E. Bishop, E. Holt, A. M. Turner, and C. Pfrang, “Indoor air pollution and the health of vulnerable groups: a systematic review focused on particulate matter (PM), volatile organic compounds (VOCs) and their effects on children and people with pre-existing lung disease,” Int. J. Environ. Res. Public Health, vol. 19, no. 14, p. 8752, 2022.
[5] B. S. Situmeang et al., “Pengaruh Tingkat Polusi Udara Terhadap Tingkat Pengidap Penyakit Ispa Di Lingkup Masyarakat Kramat Jati,” J. Compr. Sci., vol. 2, no. 12, pp. 1520–1539, 2023.
[6] A. Y. T. Panuju and M. Usman, “PM2. 5 Concentration Pattern in ASEAN Countries Based on Population Density,” Procedia Eng. Life Sci., vol. 4, 2023.
[7] M. Anitha and L. S. Kumar, “Development of an IoT-Enabled Air Pollution Monitoring and Air Purifier System,” Mapan - J. Metrol. Soc. India, vol. 38, no. 3, pp. 669–688, 2023, doi: 10.1007/s12647-023-00660-y.
[8] A. Prasetiyo, I. Suarez, J. Parapat, and Z. Amali, Ambiguities versus Ambition: A Review of Indonesia’s Energy Transition Policy. 2023.
[9] F. N. Abbas, I. M. Saadoon, Z. K. Abdalrdha, and E. N. Abud, “Capable of gas sensor MQ-135 to monitor the air quality with arduino uno,” Int. J. Eng. Res. Technol., vol. 13, no. 10, pp. 2955–2959, 2020, doi: 10.37624/IJERT/13.10.2020.2955-2959.
[10] K. A. Arsyad and Y. Priyana, “Studi Kausalitas antara Polusi Udara dan Kejadian Penyakit Saluran Pernapasan pada Penduduk Kota Bogor, Jawa Barat, Indonesia,” J. Multidisiplin West Sci., vol. 2, no. 06, pp. 462–472, 2023.
[11] M. Iqramullah, A. Asri, and N. Fakhri, “Stres Berkendara Akibat Kemacetan Lalu Lintas Dan Perilaku Agresif Berkendara,” Gema Lingkung. Kesehat., vol. 20, no. 2, pp. 105–110, 2022.
[12] D. Panicker, D. Kapoor, B. Thakkar, L. Kumar, and M. Kamthe, “Smart air purifier with air quality monitoring system,” Int. J. Res. Appl. Sci. Eng. Technol, vol. 8, no. 5, pp. 1511–1515, 2020.
[13] M. S. Novelan, “Sistem Monitoring Kualitas Udara Dalam Ruangan Menggunakan Mikrokontroler dan Aplikasi Android,” J. Nas. Inform. dan Teknol. Jaringan, ISSN, pp. 2540–7597, 2020.
[14] I. A. Rombang, L. B. Setyawan, and G. Dewantoro, “Perancangan Prototipe Alat Deteksi Asap Rokok dengan Sistem Purifier Menggunakan Sensor MQ-135 dan MQ-2,” Techné J. Ilm. Elektrotek., vol. 21, no. 1, pp. 131–144, 2022.
[15] R. Nofrialdi, E. B. Saputra, F. Saputra, and Y. Rinanda, “Pengaruh Internet of Things: Analisis Efektivitas Kerja, Perilaku Individu dan Supply Chain,” J. Manaj. Dan Pemasar. Digit., vol. 1, no. 1, pp. 1–13, 2023.
[16] A. Mota, C. Serôdio, A. Briga-Sá, and A. Valente, “Implementation of an Internet of Things Architecture to Monitor Indoor Air Quality: A Case Study During Sleep Periods,” Sensors, vol. 25, no. 6, p. 1683, 2025.
[17] H. Zhang and R. Srinivasan, “A biplot-based PCA approach to study the relations between indoor and outdoor air pollutants using case study buildings,” Buildings, vol. 11, no. 5, p. 218, 2021.
[18] M. Zhou, A. M. Abdulghani, M. A. Imran, and Q. H. Abbasi, “Internet of Things (IoT) Enabled Smart Indoor Air Quality Monitoring System,” ACM Int. Conf. Proceeding Ser., pp. 89–93, Apr. 2020, doi: 10.1145/3398329.3398342;CSUBTYPE:STRING:CONFERENCE.