Valuing Ecological Recovery: An Environmental Economic Assessment of Oil Contaminated Soil Remediation in Tropical Rainforests

Abdillah Lubis(1) , Bahruddin(2) , Suwondo(3) , Efriyeldi(4)
(1) Doctor of Environmental Science, Postgraduate Program, Universitas Riau, Pekanbaru, 28293, Indonesia,
(2) Department of Sustainable Engineering, Postgraduate Program, Universitas Riau, Pekanbaru, 28293, Indonesia,
(3) Doctor of Environmental Science, Postgraduate Program, Universitas Riau, Pekanbaru, 28293, Indonesia,
(4) Doctor of Environmental Science, Postgraduate Program, Universitas Riau, Pekanbaru, 28293, Indonesia

Abstract

The hydrocarbon contamination affects approximately 5.9 ha of soil in Sultan Syarif Hasyim Grand Forest Park (Tahura SSH), a tropical rainforest in Riau Province, Indonesia. This study aims to determine the costs required to rehabilitate petroleum-contaminated soil and evaluate the economic significance of ecological restoration in a 5.9 ha area designated in Tahura SSH. This study provides a novel economic framework for assessing ecological damage and guiding recovery in a hydrocarbon-impacted area, integrating the Replacement Cost Method (RCM) through restoration cost calculations and the Resource Equivalence Analysis (REA) to assess and compensate for environmental damage-related losses. The study results show that the three main remediation technologies selected, bioventing, bioaugmentation & biostimulation, and ex-situ landfarming, were used to remediate oil-contaminated soil in Tahura SSH. The highest remediation costs are exsitu landfarming, followed by bioaugmentation and biostimulation, and then bioventing. The ex-situ land farming method incurred the highest remediation costs. Nevertheless, it causes ecological harm in the SSH Tahura Area. REA determined that the area required to replace oil-contaminated land should be twice the baseline from 5.9 ha to 12.8 ha. Furthermore, the compensation paid by REA for environmental damage exceeded the initial assessment by 116.1% compared to using the Replacement Cost Method (Bioaugmentation & Biostimulation, Bioventing, and Ex-Situ Landfarming). This study offers stakeholders guidance on determining a fair environmental value for oil-contaminated soil. Future studies 

Full text article

Generated from XML file

References

1. Sinje, S.S.; Alqahtani, R.T.; Kamrujjaman, Md. Modeling the Dynamics of Deforestation, Afforestation, and the Effects of Reforestation on Forests 2024.
2. Putri, M.A.; Karimi, S.; Ridwan, E.; Muharja, F. Fertilizer Use, Deforestation, and Energy Consumption: Key Drivers of Nitrous Oxide Emissions in Indonesia. Discov. Sustain. 2025, 6, 411, doi:10.1007/s43621-025-01290-x.
3. Li, G.; Wang, L.; Zhen, Q.; Zheng, J. Petroleum Induces Soil Water Repellency and Impedes the Infiltration and Evaporation Processes in Sandy Soil. J. Hydrol. 2024, 643, 131990, doi:10.1016/j.jhydrol.2024.131990.
4. Hussein, Z.S.; Hegazy, A.K.; Mohamed, N.H.; El-Desouky, M.A.; Ibrahim, S.D.; Safwat, G. Eco-Physiological Response and Genotoxicity Induced by Crude Petroleum Oil in the Potential Phytoremediator Vinca Rosea L. J. Genet. Eng. Biotechnol. 2022, 20, 135, doi:10.1186/s43141-022-00412-6.
5. Li, Y.; Li, C.; Xin, Y.; Huang, T.; Liu, J. Petroleum Pollution Affects Soil Chemistry and Reshapes the Diversity and Networks of Microbial Communities. Ecotoxicol. Environ. Saf. 2022, 246, 114129, doi:10.1016/j.ecoenv.2022.114129.
6. Haider, F.U.; Ejaz, M.; Cheema, S.A.; Khan, M.I.; Zhao, B.; Liqun, C.; Salim, M.A.; Naveed, M.; Khan, N.; Núñez-Delgado, A.; et al. Phytotoxicity of Petroleum Hydrocarbons: Sources, Impacts and Remediation Strategies. Environ. Res. 2021, 197, 111031, doi:10.1016/j.envres.2021.111031.
7. Akpan, E.E. Environmental Consequences of Oil Spills on Marine Habitats and the Mitigating Measures—The Niger Delta Perspective. J. Geosci. Environ. Prot. 2022, 10, 191–203, doi:10.4236/gep.2022.106012.
8. Feigin, S.V.; Wiebers, D.O.; Lueddeke, G.; Morand, S.; Lee, K.; Knight, A.; Brainin, M.; Feigin, V.L.; Whitfort, A.; Marcum, J.; et al. Proposed Solutions to Anthropogenic Climate Change: A Systematic Literature Review and a New Way Forward. Heliyon 2023, 9, e20544, doi:10.1016/j.heliyon.2023.e20544.
9. Di Sacco, A.; Hardwick, K.A.; Blakesley, D.; Brancalion, P.H.S.; Breman, E.; Cecilio Rebola, L.; Chomba, S.; Dixon, K.; Elliott, S.; Ruyonga, G.; et al. Ten Golden Rules for Reforestation to Optimize Carbon Sequestration, Biodiversity Recovery and Livelihood Benefits. Glob. Change Biol. 2021, 27, 1328–1348, doi:10.1111/gcb.15498.
10. Romanazzi, G.R.; Ottomano Palmisano, G.; Cioffi, M.; Leronni, V.; Toromani, E.; Koto, R.; De Boni, A.; Acciani, C.; Roma, R. A Cost–Benefit Analysis for the Economic Evaluation of Ecosystem Services Lost Due to Erosion in a Mediterranean River Basin. Land 2024, 13, 1512, doi:10.3390/land13091512.
11. Zhan, W.; Cheng, H.; Shen, S. Evaluation of Urban Wetland Ecosystem Service Value in Zhuzhou City. Nat. Environ. Pollut. Technol. 2020, 19, 453–467, doi:10.46488/nept.2020.v19i02.003.
12. Bani, A.; Suprihatin; Saptomo, S.; Kaswanto, R. Resource Equivalency Analysis (REA): Implication Environmental of Groundwater in Kupang East Nusa Tenggara. J. Pengelolaan Sumberd. Alam Dan Lingkung. J. Nat. Resour. Environ. Manag. 2023, 13, 68–75, doi:10.29244/jpsl.13.1.68-75.
13. Fricano, G.F.; Baumann, M.S.; Fedeli, K.; Schlemme, C.E.; Carle, M.V.; Landry, M. Modeling Coastal Marsh Restoration Benefits in the Northern Gulf of Mexico. Estuaries Coasts 2020, 43, 1804–1820, doi:10.1007/s12237-020-00706-3.
14. Fauzan, M.N.; Dwiastuti, R.; Sujarwo, S.; Kurniawan, S. Changes in Soil Characteristics and Estimated Cost on Reclamation of Former Sand Mining Land. J. Degraded Min. Lands Manag. 2022, 9, 3533–3543, doi:10.15243/jdmlm.2022.093.3533.
15. Luis Antonio, G.V.; Carlos Raúl, G.H.; Ana Lucero, I.G. Choice of Remediation Technology for a Contaminated Soil by 1,2-Dichloroethane (DCA). J. Basic Appl. Sci. 2023, 19, 202–206, doi:10.29169/1927-5129.2023.19.16.
16. Mulligan, C.N. Sustainable Remediation of Contaminated Soil Using Biosurfactants. Front. Bioeng. Biotechnol. 2021, 9, 635196, doi:10.3389/fbioe.2021.635196.
17. Wan, X.; Lei, M.; Yang, J.; Chen, T. Three-Year Field Experiment on the Risk Reduction, Environmental Merit, and Cost Assessment of Four in Situ Remediation Technologies for Metal(Loid)-Contaminated Agricultural Soil. Environ. Pollut. 2020, 266, 115193, doi:10.1016/j.envpol.2020.115193.
18. Ajibola, M.O.; Kabiamaowei, A.I.; Oluwunmi, A.O.; Owolabi, D.R. Assessing the Methods of Valuing Contaminated Land in Rivers State, Nigeria. Acad. J. Interdiscip. Stud. 2020, 9, 173, doi:10.36941/ajis-2020-0035.
19. Selivanov, E.; Hlaváčková, P. Methods for Monetary Valuation of Ecosystem Services: A Scoping Review. J. For. Sci. 2021, 67, 499–511, doi:10.17221/96/2021-JFS.
20. Putri, E.I.K. Valuasi Lingkungan; Unversitas Terbuka, 2021; Vol. 1; ISBN 978602392975.
21. Pavanelli, D.D.; Voulvoulis, N. Habitat Equivalency Analysis, a Framework for Forensic Cost Evaluation of Environmental Damage. Ecosyst. Serv. 2019, 38, 100953, doi:10.1016/j.ecoser.2019.100953.
22. Hou, D.; O’Connor, D. Green and Sustainable Remediation: Past, Present, and Future Developments. In Sustainable Remediation of Contaminated Soil and Groundwater; Elsevier, 2020; pp. 19–42 ISBN 978-0-12-817982-6.
23. Pioch, S.; Johnston, M.W.; Vaissière, A.-C.; Berger, F.; Jacob, C.; Dodge, R. An Update of the Visual_HEA Software to Improve the Implementation of the Habitat Equivalency Analysis Method. Ecol. Eng. 2017, 105, 276–283, doi:10.1016/j.ecoleng.2017.05.008.
24. Desvousges, W.H.; Gard, N.; Michael, H.J.; Chance, A.D. Habitat and Resource Equivalency Analysis: A Critical Assessment. Ecol. Econ. 2018, 143, 74–89, doi:10.1016/j.ecolecon.2017.07.003.
25. Dunford, R.W.; Ginn, T.C.; Desvousges, W.H. The Use of Habitat Equivalency Analysis in Natural Resource Damage Assessments. Ecol. Econ. 2004, 48, 49–70, doi:10.1016/j.ecolecon.2003.07.011.
26. Hanson, D.A.; Britney, E.M.; Earle, C.J.; Stewart, T.G. Adapting Habitat Equivalency Analysis (HEA) to Assess Environmental Loss and Compensatory Restoration Following Severe Forest Fires. For. Ecol. Manag. 2013, 294, 166–177, doi:10.1016/j.foreco.2012.12.032.
27. Schoenmaker, D.; Schramade, W. Which Discount Rate for Sustainability? J. Sustain. Finance Account. 2024, 3, 100010, doi:10.1016/j.josfa.2024.100010.
28. Remm, L.; Lõhmus, A.; Leibak, E.; Kohv, M.; Salm, J.-O.; Lõhmus, P.; Rosenvald, R.; Runnel, K.; Vellak, K.; Rannap, R. Restoration Dilemmas between Future Ecosystem and Current Species Values: The Concept and a Practical Approach in Estonian Mires. J. Environ. Manage. 2019, 250, 109439, doi:10.1016/j.jenvman.2019.109439.

Authors

Abdillah Lubis
abdillah.lbs6296@grad.unri.ac.id (Primary Contact)
Bahruddin
Suwondo
Efriyeldi
Author Biographies

Bahruddin, Department of Sustainable Engineering, Postgraduate Program, Universitas Riau, Pekanbaru, 28293, Indonesia

Professor in Chemical Engineering; Department of Sustainable Engineering

Suwondo, Doctor of Environmental Science, Postgraduate Program, Universitas Riau, Pekanbaru, 28293, Indonesia

Professor in Ecology and Environmental Science. Department of Environmental Science

Efriyeldi, Doctor of Environmental Science, Postgraduate Program, Universitas Riau, Pekanbaru, 28293, Indonesia

Professor in the Science of Mangrove Ecology, Department of Marine Science

Lubis, A. (2026) “Valuing Ecological Recovery: An Environmental Economic Assessment of Oil Contaminated Soil Remediation in Tropical Rainforests”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 15(6), p. 1073. doi:10.29244/jpsl.15.6.1073.

Article Details

How to Cite

Lubis, A. (2026) “Valuing Ecological Recovery: An Environmental Economic Assessment of Oil Contaminated Soil Remediation in Tropical Rainforests”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 15(6), p. 1073. doi:10.29244/jpsl.15.6.1073.