Valuing Ecological Recovery: An Environmental Economic Assessment of Oil Contaminated Soil Remediation in Tropical Rainforests
Abstract
The hydrocarbon contamination affects approximately 5.9 ha of soil in Sultan Syarif Hasyim Grand Forest Park (Tahura SSH), a tropical rainforest in Riau Province, Indonesia. This study aims to determine the costs required to rehabilitate petroleum-contaminated soil and evaluate the economic significance of ecological restoration in a 5.9 ha area designated in Tahura SSH. This study provides a novel economic framework for assessing ecological damage and guiding recovery in a hydrocarbon-impacted area, integrating the Replacement Cost Method (RCM) through restoration cost calculations and the Resource Equivalence Analysis (REA) to assess and compensate for environmental damage-related losses. The study results show that the three main remediation technologies selected, bioventing, bioaugmentation & biostimulation, and ex-situ landfarming, were used to remediate oil-contaminated soil in Tahura SSH. The highest remediation costs are exsitu landfarming, followed by bioaugmentation and biostimulation, and then bioventing. The ex-situ land farming method incurred the highest remediation costs. Nevertheless, it causes ecological harm in the SSH Tahura Area. REA determined that the area required to replace oil-contaminated land should be twice the baseline from 5.9 ha to 12.8 ha. Furthermore, the compensation paid by REA for environmental damage exceeded the initial assessment by 116.1% compared to using the Replacement Cost Method (Bioaugmentation & Biostimulation, Bioventing, and Ex-Situ Landfarming). This study offers stakeholders guidance on determining a fair environmental value for oil-contaminated soil. Future studies
Full text article
References
2. Putri, M.A.; Karimi, S.; Ridwan, E.; Muharja, F. Fertilizer Use, Deforestation, and Energy Consumption: Key Drivers of Nitrous Oxide Emissions in Indonesia. Discov. Sustain. 2025, 6, 411, doi:10.1007/s43621-025-01290-x.
3. Li, G.; Wang, L.; Zhen, Q.; Zheng, J. Petroleum Induces Soil Water Repellency and Impedes the Infiltration and Evaporation Processes in Sandy Soil. J. Hydrol. 2024, 643, 131990, doi:10.1016/j.jhydrol.2024.131990.
4. Hussein, Z.S.; Hegazy, A.K.; Mohamed, N.H.; El-Desouky, M.A.; Ibrahim, S.D.; Safwat, G. Eco-Physiological Response and Genotoxicity Induced by Crude Petroleum Oil in the Potential Phytoremediator Vinca Rosea L. J. Genet. Eng. Biotechnol. 2022, 20, 135, doi:10.1186/s43141-022-00412-6.
5. Li, Y.; Li, C.; Xin, Y.; Huang, T.; Liu, J. Petroleum Pollution Affects Soil Chemistry and Reshapes the Diversity and Networks of Microbial Communities. Ecotoxicol. Environ. Saf. 2022, 246, 114129, doi:10.1016/j.ecoenv.2022.114129.
6. Haider, F.U.; Ejaz, M.; Cheema, S.A.; Khan, M.I.; Zhao, B.; Liqun, C.; Salim, M.A.; Naveed, M.; Khan, N.; Núñez-Delgado, A.; et al. Phytotoxicity of Petroleum Hydrocarbons: Sources, Impacts and Remediation Strategies. Environ. Res. 2021, 197, 111031, doi:10.1016/j.envres.2021.111031.
7. Akpan, E.E. Environmental Consequences of Oil Spills on Marine Habitats and the Mitigating Measures—The Niger Delta Perspective. J. Geosci. Environ. Prot. 2022, 10, 191–203, doi:10.4236/gep.2022.106012.
8. Feigin, S.V.; Wiebers, D.O.; Lueddeke, G.; Morand, S.; Lee, K.; Knight, A.; Brainin, M.; Feigin, V.L.; Whitfort, A.; Marcum, J.; et al. Proposed Solutions to Anthropogenic Climate Change: A Systematic Literature Review and a New Way Forward. Heliyon 2023, 9, e20544, doi:10.1016/j.heliyon.2023.e20544.
9. Di Sacco, A.; Hardwick, K.A.; Blakesley, D.; Brancalion, P.H.S.; Breman, E.; Cecilio Rebola, L.; Chomba, S.; Dixon, K.; Elliott, S.; Ruyonga, G.; et al. Ten Golden Rules for Reforestation to Optimize Carbon Sequestration, Biodiversity Recovery and Livelihood Benefits. Glob. Change Biol. 2021, 27, 1328–1348, doi:10.1111/gcb.15498.
10. Romanazzi, G.R.; Ottomano Palmisano, G.; Cioffi, M.; Leronni, V.; Toromani, E.; Koto, R.; De Boni, A.; Acciani, C.; Roma, R. A Cost–Benefit Analysis for the Economic Evaluation of Ecosystem Services Lost Due to Erosion in a Mediterranean River Basin. Land 2024, 13, 1512, doi:10.3390/land13091512.
11. Zhan, W.; Cheng, H.; Shen, S. Evaluation of Urban Wetland Ecosystem Service Value in Zhuzhou City. Nat. Environ. Pollut. Technol. 2020, 19, 453–467, doi:10.46488/nept.2020.v19i02.003.
12. Bani, A.; Suprihatin; Saptomo, S.; Kaswanto, R. Resource Equivalency Analysis (REA): Implication Environmental of Groundwater in Kupang East Nusa Tenggara. J. Pengelolaan Sumberd. Alam Dan Lingkung. J. Nat. Resour. Environ. Manag. 2023, 13, 68–75, doi:10.29244/jpsl.13.1.68-75.
13. Fricano, G.F.; Baumann, M.S.; Fedeli, K.; Schlemme, C.E.; Carle, M.V.; Landry, M. Modeling Coastal Marsh Restoration Benefits in the Northern Gulf of Mexico. Estuaries Coasts 2020, 43, 1804–1820, doi:10.1007/s12237-020-00706-3.
14. Fauzan, M.N.; Dwiastuti, R.; Sujarwo, S.; Kurniawan, S. Changes in Soil Characteristics and Estimated Cost on Reclamation of Former Sand Mining Land. J. Degraded Min. Lands Manag. 2022, 9, 3533–3543, doi:10.15243/jdmlm.2022.093.3533.
15. Luis Antonio, G.V.; Carlos Raúl, G.H.; Ana Lucero, I.G. Choice of Remediation Technology for a Contaminated Soil by 1,2-Dichloroethane (DCA). J. Basic Appl. Sci. 2023, 19, 202–206, doi:10.29169/1927-5129.2023.19.16.
16. Mulligan, C.N. Sustainable Remediation of Contaminated Soil Using Biosurfactants. Front. Bioeng. Biotechnol. 2021, 9, 635196, doi:10.3389/fbioe.2021.635196.
17. Wan, X.; Lei, M.; Yang, J.; Chen, T. Three-Year Field Experiment on the Risk Reduction, Environmental Merit, and Cost Assessment of Four in Situ Remediation Technologies for Metal(Loid)-Contaminated Agricultural Soil. Environ. Pollut. 2020, 266, 115193, doi:10.1016/j.envpol.2020.115193.
18. Ajibola, M.O.; Kabiamaowei, A.I.; Oluwunmi, A.O.; Owolabi, D.R. Assessing the Methods of Valuing Contaminated Land in Rivers State, Nigeria. Acad. J. Interdiscip. Stud. 2020, 9, 173, doi:10.36941/ajis-2020-0035.
19. Selivanov, E.; Hlaváčková, P. Methods for Monetary Valuation of Ecosystem Services: A Scoping Review. J. For. Sci. 2021, 67, 499–511, doi:10.17221/96/2021-JFS.
20. Putri, E.I.K. Valuasi Lingkungan; Unversitas Terbuka, 2021; Vol. 1; ISBN 978602392975.
21. Pavanelli, D.D.; Voulvoulis, N. Habitat Equivalency Analysis, a Framework for Forensic Cost Evaluation of Environmental Damage. Ecosyst. Serv. 2019, 38, 100953, doi:10.1016/j.ecoser.2019.100953.
22. Hou, D.; O’Connor, D. Green and Sustainable Remediation: Past, Present, and Future Developments. In Sustainable Remediation of Contaminated Soil and Groundwater; Elsevier, 2020; pp. 19–42 ISBN 978-0-12-817982-6.
23. Pioch, S.; Johnston, M.W.; Vaissière, A.-C.; Berger, F.; Jacob, C.; Dodge, R. An Update of the Visual_HEA Software to Improve the Implementation of the Habitat Equivalency Analysis Method. Ecol. Eng. 2017, 105, 276–283, doi:10.1016/j.ecoleng.2017.05.008.
24. Desvousges, W.H.; Gard, N.; Michael, H.J.; Chance, A.D. Habitat and Resource Equivalency Analysis: A Critical Assessment. Ecol. Econ. 2018, 143, 74–89, doi:10.1016/j.ecolecon.2017.07.003.
25. Dunford, R.W.; Ginn, T.C.; Desvousges, W.H. The Use of Habitat Equivalency Analysis in Natural Resource Damage Assessments. Ecol. Econ. 2004, 48, 49–70, doi:10.1016/j.ecolecon.2003.07.011.
26. Hanson, D.A.; Britney, E.M.; Earle, C.J.; Stewart, T.G. Adapting Habitat Equivalency Analysis (HEA) to Assess Environmental Loss and Compensatory Restoration Following Severe Forest Fires. For. Ecol. Manag. 2013, 294, 166–177, doi:10.1016/j.foreco.2012.12.032.
27. Schoenmaker, D.; Schramade, W. Which Discount Rate for Sustainability? J. Sustain. Finance Account. 2024, 3, 100010, doi:10.1016/j.josfa.2024.100010.
28. Remm, L.; Lõhmus, A.; Leibak, E.; Kohv, M.; Salm, J.-O.; Lõhmus, P.; Rosenvald, R.; Runnel, K.; Vellak, K.; Rannap, R. Restoration Dilemmas between Future Ecosystem and Current Species Values: The Concept and a Practical Approach in Estonian Mires. J. Environ. Manage. 2019, 250, 109439, doi:10.1016/j.jenvman.2019.109439.
Authors
Copyright (c) 2026 Abdillah Lubis, Bahruddin, Suwondo, Efriyeldi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).