The Effectiveness of Lotus (Nelumbo nucifera G.) with Various Growing Mediafor Phytoremediation of Acid Mine Drainage
Abstract
Acid mine drainage (AMD), characterized by high acidity and concentrations of heavy metals that can damage aquatic ecosystems, poses a serious environmental problem. This research aimed to analyze the effectiveness of Nelumbo nucifera Geartn. grown using a Floating Wetland System (FTW), treated with topsoil or bokashi, in altering pH and reducing heavy metals in coal mine AMD. The experiment was conducted for 14 days in a sedimentation pond of post-mining land at PT Bukit Asam, Palembang, Indonesia. Two FWS units were installed on the pond’s surface: one was enriched with topsoil, while the other was with bokashi. Fifteen N. nucifera plants were grown in each floating reactor, with plants grown directly in the AMD without the FWS used as the control group. Plant
growth, media pH, and heavy metal contents were monitored during and after treatment. The results indicate that the system was capable of increasing the initial highly acidic AMD pH (pH 2.8) to a range close to neutral (6.5–6.9). The concentrations of Fe and Mn metals were significantly reduced through the absorption mechanism of roots, stems, and leaves, with an efficiency of more than 90%. XRD analysis also revealed the formation of secondary mineral phases that support vegetative growth in both reactors. These findings confirm that the FWS installed with the bokashi ameliorant and N. nucifera has great potential as a sustainable solution for acid mine drainage remediation.
Full text article
References
[2] Juswardi, Aulia H, Tanzerina N, Junaidi E, Triwardana S. 2023. Effectiveness of Waterchestnut (Eleocharis dulcis (Burm.f.) Trin. ex Henschel) in Phytoremediation of Coal Mine Acid Drainage in Constructed Wetlands. J of Scientific Development and Research. 8(6):1768–1772. www.ijsdr.org.
[3] Noor I, Arifin YF, Priatmadi BJ, Saidy AR. 2023. Laboratory Simulation of the Swampy Forest System for the Passive Treatment of Acid Mine Drainage in Coal Mine Reclamation Areas. Sci Rep. 13(1). doi:10.1038/s41598-023-32990-x.
[4] Juswardi J, Mukti W, Tanzerina N, Junaidi E, Wardana ST. 2022. Peran Antioksidan Asam Organik pada Eleocharis dulcis (Burm.f.) Trin. ex Hesch. sebagai Respons Terhadap Cekaman Logam pada Fitoremediasi Air Asam Tambang Batubara. Sriwij Biosci. 3(1):1–8. doi:10.24233/sribios.3.1.2022.340.
[5] Priya AK, Muruganandam M, Ali SS, Kornaros M. 2023. Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach. Toxics. 11(5). doi:10.3390/toxics11050422.
[6] Hamim H, Hilmi M. Pranowo D, Saprudin D, Setyaningsih L. 2017. Morpho-physiological Changes of Biodiesel Producer Plants Reutelis trisperma (Blanco) in Response to Gold Mining Wastewater. Pak J Biol Sci. 20:423-435.
[7] Hidayati N, Hamim H, Sulistyaningsih YC. 2018. Phytoremediation of Petroleum Hydrocarbon Using Three Mangrove Species Applied Through Tidal Bioreactor. Biodiversitas. 19(3): 736-742.
[8] Wina A. 2020. Penerapan Metode Constructed Wetland dalam Upaya Pengelolaan Limbah Air Asam Tambang pada Penambangan Batubara, Berdasarkan Literatur Review. ReTII. 2020:201–207. https://journal.itny.ac.id/index.php/ReTII/article/view/2027.
[9] Liu Y, Wang H, Cui Y, Chen N. 2023. Removal of Copper Ions from Wastewater: A Review. Int J Environ Res Public Health. 20(5). doi:10.3390/ijerph20053885.
[10] Fillah A, Kismayanti C, Andriani D, Sari E, Nissa F, Dewi E, Nurwahyunani A. 2023. Tanaman Lotus (Nelumbo nucifera) sebagai Agen Fitoremediasi Limbah Pencemaran Air. Numbers: Jurnal Pendidikan Matematika dan Ilmu Pengetahuan Alam. 1(3):64–73.
[11] Dhivakar M, Nagamani S, Sowmya S. 2021. Experimental Study On Dairy Wastewater Treatment By Phytoremediation process. International Journal of Recent Engineering Science. 8(3):7–11. doi:10.14445/23497157/ijres-v8i3p102.
[12] Mamine N, Grara N, Khaldi F, Maresca V, Aouaichia K, Basile A. 2024. Determination of the Toxic Effects of Heavy Metals on the Morpho-Anatomical Responses of the Leaf of Typha latifolia as a Biomonitoring Tool. Plants. 13(2):1–13. doi:10.3390/plants13020176.
[13] Nasir M, Nur M, Pandiangan D, Mambu SM, Fauziah S, Raya I, Fudholi A, Irfandi R. 2022. Phytoremediation Study of Water Hyacinth (Eichhornia Crassipes) on Zinc Metal Ion (Zn2+). International Journal of Design and Nature and Ecodynamics. 17(3):417–422. doi:10.18280/ijdne.170312.
[14] Sharma J, Sharma S, Bhatt U, Soni V. 2022. Toxic effects of Rhodamine B on Antioxidant System and Photosynthesis of Hydrilla verticillata. Journal of Hazardous Materials Letters. 3. doi:10.1016/j.hazl.2022.100069.
[15] Al-Baldawi IA, Yasin SR, Jasim SS, Abdullah SRS, Almansoory AF, Ismail NI. 2022. Removal of Copper by Azolla filiculoides and Lemna minor: Phytoremediation Potential, Adsorption Kinetics and Isotherms. Heliyon. 8(11). doi:10.1016/j.heliyon.2022.e11456.
[16] Habibullah A, Khamidah N, Saputra R. 2021. Pemanfaatan Typha angustifolia dan Fungi Mikoriza Arbuskular untuk Fitoremediasi Air Asam Tambang. J Teknologi Mineral dan Batubara. 17(2):95–105. doi:10.30556/jtmb.vol17.no2.2021.1163.
[17] Pranama H, Filany D, Dewi A, Tikasari J, Warisman A, Zuhriyah F, Dewi E, Nurwahyunani A. 2023. Efektivitas Semanggi Air (Marsilea crenata) Terhadap Kadar TSS pada Fitoremediasi Limbah Cair. J Salome : Multidisipliner Keilmuan. 1(4):227–236.
[18] Quoc DP, Nga NP, Thach LB. 2021. Effect of Planting Time on Growth and Corm Yield of Chinese Water Chestnut (Eleocharis dulcis) in the Mekong Delta, Vietnam. Asian Journal of Agriculture and Rural Development. 11(2):192–198. doi:10.18488/journal.ajard.2021.112.192.198.
[19] Nahar K, Hoque S. 2021. Phytoremediation to Improve Eutrophic Ecosystem by the Floating Aquatic Macrophyte, Water Lettuce (Pistia stratiotes L.) at Lab Scale. Egypt J Aquat Res. 47(2):231–237. doi:10.1016/j.ejar.2021.05.003.
[20] Anna MK, Vimala KS, Raiby P P, Priyalatha B, Priya S. 2023. Phytoremediation Potential of a Few Hydrophytic Medicinal Plants: A review. International J of Scholarly Research in Biology and Pharmacy. 2(1):005–009. doi:10.56781/ijsrbp.2023.2.1.0013.
[21] Arivukkarasu D, Sathyanathan R. 2023. Phytoremediation of Domestic Sewage Using a Floating Wetland and Assessing the Pollutant Removal Effectiveness of Four Terrestrial Plant Species. H2Open J. 6(2). doi:10.2166/h2oj.2023.032.
[22] Sekarjannah FA, Mansur I, Abidin Z, Fauzi AM. 2023. Phytoremediation of Acid Mine Drainage with Melaleuca cajuputi, Nauclea orientalis, and Vetiveria zizanioides in Floating Treatment Wetland. Hayati. 30(3):491–499. doi:10.4308/hjb.30.3.491-499.
[23] Al-Huqail AA, et al. 2022. Phytoremediation of Composite Industrial Effluent using Sacred Lotus (Nelumbo nucifera Gaertn): A Lab-Scale Experimental Investigation. Sustainability. 14(15):1–13. doi:10.3390/su14159500.
[24] Rapang ST, Devy SD, Nugroho W, Hasan H, Oktaviani R, Trides T. 2022. Penurunan Kadar Logam Besi (Fe) pada Air Asam Tambang Menggunakan Karbon Aktif Cangkang Telur. J Chemurgy. 6(2):58–64. http://e-journals.unmul.ac.id/index.php/TK.
[25] Ren K, Zeng J, Liang J, Yuan D, Jiao Y, Peng C, Pan X. 2021. Impacts of Acid Mine Drainage on Karst Aquifers: Evidence from Hydrogeochemistry, Stable Sulfur and Oxygen Isotopes. Science of the Total Environment. 761. doi:10.1016/j.scitotenv.2020.143223.
[26] Sitorus S, Wahyudin M, Napitupulu M. 2024. Monograf Kimia Air Asam Tambang Batu Bara. Pekalongan : NEM.
[27] Mutlu E, Tokatlı C, Islam ARMT, Islam MS, Muhammad S. 2023. Water Quality Assessment of Şehriban stream (Kastamonu, Türkİye) from a Multi-Statistical Perspective. Int J Environ Anal Chem. 104(29):8229–8245. doi:10.1080/03067319.2023.2197114.
[28] Lelesz JÉ, Csajbók J, Molnár PI, Virág IC, Kutasy ET. 2024. Mitigating the Accumulation of Mercury (Hg) and Lead (Pb) through Humic Acid Application under Aquaponic Conditions Using Watercress (Nasturtium officinale R. Br.) as a Model Plant. Plants. 13(17):1–19. doi:10.3390/plants13172386.
[29] Vikram N, Sagar A, Gangwar C, Husain R, Narayan Kewat R. 2022. Properties of Humic Acid Substances and Their Effect in Soil Quality and Plant Health. London : IntechOpen.
[30] Marwa A. 2024. Evaluation of Wetland Plants Treatment Potentials for Acid Mine Drainage in Tanzania. Nigerian Journal of Technology. 43(2):381–390. doi:10.4314/njt.v43i2.21.
[31] Akhyar, Meilina H, Djuned F, Mulyati S, Muslim A. 2023. Effectivity of Dolomite Adsorbent in Purification of Mn and Cu from Acid Mine Drainage. International Journal of Social Science. 2(6):86–96.
[32] Laura CI, Bouafif H. 2024. Activation of Dolomite for Passive Treatment of Mine Drainage in a Circular Economy Perspective with Zero-Waste Objective. International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE). 11(7):44–51.
https://www.researchgate.net/publication/384198962.
[33] Nutayla N, Rejo A, Adhiguna RT. 2023. Coal Post-Mining Reclamation Using Pterocarpus indicus. Journal of Ecological Engineering. 24(12):366–376. doi:10.12911/22998993/174091.
[34] Liang Z, Neményi A, Kovács GP, Gyuricza C. 2024. Incorporating Functional Traits Into Heavy Metals Phytoremediation: The future of Field-Based Phytoremediation. Ecological Indicators. 166:1–12. doi:10.1016/j.ecolind.2024.112262.
[35] Suhada HR, Trisnaningsih U, Wahyuni S. 2024. Pengaruh Bokashi Limbah Kulit Kopi pada Bibit Pepaya (Caracica Papaya L.) Calina. Jurnal Ilmu Pertanian Indonesia. 29(4):618–625. doi:10.18343/jipi.29.4.618.
[36] Che Ya YM, Ch’ng HY, Susanto D, Liew JY, Md Zain NB, Naher L, Azmin SNHM. 2023. Response of Growth Performance and Yield of Butternut Squash (Cucurbita moschata Duch Ex Poir) Cultivar Waltham Under Different Dosages of Bokashi Application. J of Applied and Natural Science. 15(4):1386–1391. doi:10.31018/jans.v15i4.5042.
[37] Zaini NSM, Elkwiee AAA, Naim MN, Bakar NFA. 2021. Role of Nano clay Surface Charge for Phytoremediation Process Enhancement. Journal of Water Process Engineering. 40:1–8. doi:10.1016/j.jwpe.2020.101850.
[38] Emamverdian A, Ding Y, Mokhberdoran F, Ahmad Z, Xie Y. 2020. Determination of Heavy Metal Tolerance Threshold in a Bamboo Species (Arundinaria pygmaea) as Treated with Silicon Dioxide Nanoparticles. Glob Ecol Conserv. 24:1–14. doi:10.1016/j.gecco.2020.e01306.
[39] Jan R, Asaf S, Numan M, Lubna, Kim KM. 2021. Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Agronomy. 11(5):1–31. doi:10.3390/agronomy11050968.
[40] Frémont A, Sas E, Sarrazin M, Gonzalez E, Brisson J, Pitre FE, Brereton NJB. 2022. Phytochelatin and Coumarin Enrichment in Root Exudates of Arsenic-Treated White Lupin. Plant Cell and Environment. 45(3): 936-954.
[41] National Center for Biotechnology Information. 2025. PubChem Compound Summary for CID 10228, Osthol. [diakses 2025 Januari 21]. https://pubchem.ncbi.nlm.nih.gov/compound/Osthol.
[42] National Center for Biotechnology Information. 2025. PubChem Compound Summary for CID 8434, Ethylparaben. [diakses 2025 Januari 21] https://pubchem.ncbi.nlm.nih.gov/compound/Ethylparaben.
[43] Saleem MH, Parveen A, Khan SU, Hussain I, Wang X, Alshaya H, El-Sheikh MA, Ali S. 2022. Silicon Fertigation Regimes Attenuates Cadmium Toxicity and Phytoremediation Potential in Two Maize (Zea mays L.) Cultivars by Minimizing Its Uptake and Oxidative Stress. Sustainability (Switzerland). 14(3). doi:10.3390/su14031462.
[44] Khan I, Awan SA, Rizwan M, Ali S, Hassan MJ, Brestic M, Zhang X, Huang L. 2021. Effects of Silicon on Heavy Metal Uptake at the Soil-Plant Interphase: A Review. Ecotoxicol Environ Saf. 222(112510):1–15. doi:10.1016/j.ecoenv.2021.112510.
[45] Luo JS, Zhang Z. 2021. Mechanisms of Cadmium Phytoremediation and Detoxification in Plants. Crop Journal. 521–529. doi:10.1016/j.cj.2021.02.001.
[46] Najihah N, Rachmadiarti F. 2023. Analisis Kadar Logam Berat Kadmium (Cd) pada Tumbuhan Air di Sungai Brantas Mojokerto. Lentera Bio. 12(2):239–247. https://journal.unesa.ac.id/index.php/lenterabio/index.
[47] Yadav AP, Gudadhe S, Kumari S, Maurya S, Tripathi M, Shukla AK. 2024. Assessment of Heavy Metal Contamination in Trifolium alexandrium and Spinacia oleracea using ICP-MS: A Comparative Analysis Across Different Districts in Eastern Uttar Pradesh. The Scientific Temper. 15(03):2440–2446. doi:10.58414/SCIENTIFICTEMPER.2024.15.3.04.
Authors
Copyright (c) 2025 Meuthea Najlaa Raudhatunisya, Irdika Mansur, Hamim Hamim

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).