Potensi Aktinomiset Filoplan Asal Tumbuhan Solanaceae sebagai Agens Pengendali Hayati Phytophthora capsici pada Cabai

The Potential of Phyllospheric Actinomycetes from Solanaceae Plants as Biocontrol Agents of Phytophthora capsici on Chili Pepper

Authors

  • Muhamad Basri Department of Plant Protection, Faculty of Agriculture, IPB University
  • Efi Toding Tondok Department of Plant Protection, Faculty of Agriculture, IPB University
  • Giyanto Department of Plant Protection, Faculty of Agriculture, IPB University

DOI:

https://doi.org/10.14692/jfi.21.1.64-77

Keywords:

chili rot, filtrate, inhibition, Streptomyces, volatile organic compounds

Abstract

The Potential of Phyllospheric Actinomycetes from Solanaceae Plants as Biocontrol Agents of Phytophthora capsici on Chili Pepper

Chili rot is an important disease caused by an Oomycete species, Phytophthora capsici. This fungus infects chili plants with a potential yield loss of more than 80%. The use of actinomycetes as a biocontrol agent is an environmentally friendly approach that effectively suppresses the growth of P. capsici through the production of antibiotics, lytic enzymes, and competition for space and nutrients. This study aimed to obtain the best actinomycetes isolated from Solanaceae plants that could suppress the growth of P. capsici. This research included isolation of actinomycetes, biosafety assay, antagonistic potential assay, analytic hierarchy process, and molecular identification. There were 71 actinomycetes isolated from 11 plant species in the the Solanaceae family. Actinomycetes isolates that passed the biosafety assay were 39 isolates. The results of antagonistic potential screening revealed 16 actinomycetes isolates capable of suppressing the growth of P. capsici. A dual culture assay showed that actinomycetes isolates were able to inhibit the growth of P. capsici in petri dishes up to 98.2% by isolate 46PPS. Furthermore, in volatile organic compounds assay, the growth of P. capsici was reduced up to 74.1% by isolate 41LAL. While filtrate of actinomycetes isolate 25TPT inhibited growth of P. capsici in liquid medium by up to 98.2%. The cellulolytic index showedthe ability of actinomycetes to break down cellulose molecules, with a cellulase index value of 2.1 by isolate 2LAP. Scoring with the AHP method narrowed down 16 isolates into four best candidates with isolate codes 2LAP, 25TPT, 37LAT, and 41LAL. The results of molecular identification showed that the four selected isolates were Streptomyces pratensis, S. seoulensis, Pseudonocardia tropica, and S. somaliensis.

Downloads

Download data is not yet available.

References

Abdelrahman O, Yagi S, El-Siddig M, El-Hussein A, Germanier F, Vrieze M, L’Haridon F, Weisskopf L. 2022. Evaluating the antagonistic potential of actinomycete Strains isolated from Sudan’s soils against Phytophthora capsici. Frontiers in Microbiology. 1(13):1–13. DOI: https://doi.org/10.3389/fmicb.2022.827824.

Aini NN, Sulistyani N. 2019. Isolation of actinomycetes from sugarcane (Saccharum officinarum) rhizosphere and the ability to produce antibiotic. Di dalam: Ahmad Dahlan International Conference Series on Pharmacy and Health Science; 2019 Nov 11-12; Yogyakarta (ID): Universitas Ahmad Dahlan. hlm 11–16.

Bhusal B, Mmbaga MT. 2020. Biological control of Phytophthora blight dan growth promotion in sweet pepper by Bacillus species. Biological Control. 150(5):104373. DOI: https://doi.org/10.1016/j.biocontrol.2020.104373.

Chamdra S, Pellokila MR. Ramang R. 2015. Analisis teknologi pengolahan sampah Di Kupang dengan proses hirarki analitik dan metode valuasi. Jurnal Manusia dan Lingkungan. 22(3):350–356. DOI: https://doi.org/10.22146/jml.18761.

Chen YY, Chen PC, Tsay TT. 2016. The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici. Biological Control. 98(4):34–42. DOI: https://doi.org/10.1016/j.biocontrol.2016.02.011.

Dini IR, Munifah I. 2014. Produksi dan karakterisasi enzim selulase ekstrak kasar dari bakteri yang diisolasi dari limbah rumput laut. Jurnal Teknologi dan Industri Pertanian Indonesia. 6(3):69–75. DOI: https://doi.org/10.17969/jtipi.v6i3.2315.

Farda B, Djebaili R, Vaccarelli I, Del Gallo M, Pellegrini M. 2022. Actinomycetes from caves: an overview of their diversity, biotechnological properties, dan insights for their use in soil environments. Journal Microorganisms. 10(2):453. DOI: https://doi.org/10.3390/microorganisms10020453.

Fatimah, Suroiyah F, Solikha N, Rahayuningtyas ND, Surtiningsih T, Nurhariyati T, Ni’matuzahroh NM, Affandi M, Geraldi A, Thontowi A. 2022. Antimicrobial activity of actinomycetes isolated from mangrove soil in Tuban, East Java, Indonesia. Biodiversitas Journal of Biological Diversity. 23(6):2957–2965. DOI: https://doi.org/10.13057/biodiv/d230622.

Nurmujahidin, Giyanto, Dadang. 2023. Pengendalian hayati penyakit busuk bulir bakteri yang disebabkan oleh Burkholderia glumae menggunakan aktinomiset. Jurnal Fitopatologi Indonesia. 19(2):63–73. DOI: https://doi.org/10.14692/jfi.19.2.63-73.

[Kementan] Kementrian Pertanian. 2023. Outlook Komoditas Pertanian Subsektoral Hortikultura Cabai. Jakarta (ID): PDSI Pertanian.

Kumari M, Dutta B, Coolong T, Diaz-Perez J, Torrance T, Shealey J, Dawson J, McAvoy T. 2024. Adaptability of Phytophthora capsici resistant bell pepper cultivars in Southern Georgia. Horticulture Technology. 34(4):513–520. DOI: https://doi.org/10.21273/HORTTECH05425-24.

Lamuka AP, Aliwu PL. 2024. Analysis of microbial diversity in pesticide-contaminated soil: A study of culturable microorganisms. Environmental and Materials. 2(2):118–126. DOI: https://doi.org/10.61511/eam.v2i2.2024.1435.

Li X, Weng Y, Chen Y, Liu K, Liu Y, Zhang K, Shi L, He S, Liu Z. 2024. CaARP1/CaSGT1 module regulates vegetative growth dan defense response of pepper plants against Phytophthora capsica. Plants Journal. 13(20):2849. DOI: https://doi.org/10.3390/plants13202849.

Mélida H, Sandoval-Sierra JV, Diéguez-Uribeondo J, Bulone V. 2013. Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types. Journal Eukaryotic Cell. 12(2):194–203. DOI: https://doi.org/10.1128/EC.00288-12.

Munif A, Ma’ruf K. 2020. Potensi bakteri endofit asal brotowali (Tinospora crispa) sebagai pengendali Sclerotium rolfsii dan pemacu pertumbuhan kacang tanah. Jurnal Fitopatoogi Indonesia. 16(3):95–104. DOI: https://doi.org/10.14692/jfi.16.3.95-104.

Rhouma A, Hajji HL, Khrieba MI. 2024. Phytophthora capsici the causal agenst of phytophthora blight of Capsicum spp.: from its taxonomy to disease management. Egyptian Journal of Phytopathology. 52(1):1–10. DOI: https://doi.org/10.21608/ejp.2024.342742.

Sanogo S, Ji P. 2013. Water management in relation to control of Phytophthora capsici in vegetable crops. Agricultural Water Management. 129(1):113–119. DOI: https://doi.org/10.1016/j.agwat.2013.07.018.

Selim MSM, Abdelhamid SA, Mohamed SS. 2021. Secondary metabolites and biodiversity of actinomycetes. Journal of Genetic Engineering and Biotechnology. 19(1):72. DOI: https://doi.org/10.1186/s43141-021-00156-9.

Silitonga DM, Priyani N, Nurwahyuni I. 2013. Isolasi dan uji potensi isolat bakteri pelarut fosfat dan bakteri penghasil hormon IAA (indole acetic acid) terhadap pertumbuhan kedelai (Glycine max L.) pada tanah kuning. Saintia Biologi. 1(2):35–41.

Sinuco LDC, Coconubo GLC, Castellanos HL. 2020. Fungicidal activity of volatile organic compounds from Paenibacillus bacteria against Colletotrichum gloeosporioides. Revista Colombiana de Química. 49(1):20–25. DOI: https://doi.org/10.15446/rev.colomb.quim.v1n49.81996.

Skidmore AM, Dickinson CH. 1976. Colony interactions and hyphal interference between Septoria nodorum and phylloplane fungi. Trans of the British Mycology Society. 66(1):57–64. DOI: https://doi.org/10.1016/S0007-1536(76)80092-7.

Utarti E, Suwanto A, Suhartono MT, Meryandini A. 2020. Identifikasi aktinomiset selulolitik dan xilanolitik indigenous. Berkala SainsTek. 8(1):1–5.

Volynchikova E, Kim KD. 2022. Biological control of oomycete soilborne diseases caused by Phytophthora capsici, Phytophthora infestans, dan Phytophthora nicotianae in solanaceous crops. Mycobiology Journal. 50(5):269–293. DOI: https://doi.org/10.1080/12298093.2022.2136333.

Walsh PS, Metzger DA, Higuchi R. 2013. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 54(3):134–139. DOI: https://doi.org/10.2144/000114018.

Wei C, Wei J, Kong Q, Fan D, Qiu G, Feng C, Li F, Preis S, Wei C. 2020. Selection of optimum biological treatment for coking wastewater using analytic hierarchy process. Science of The Total Environment. 742:140400. DOI: https://doi.org/10.1016/j.scitotenv.2020.140400.

Xiao K, Kinkel LL, Samac DA. 2002. Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biological Control. 23(3):285–1295. DOI: https://doi.org/10.1006/bcon.2001.1015.

Yanti DP, Aninditya D, Siregar IF. 2025. Antagonistic test of Beauveria bassiana fungus in suppressing Collectotrichum spp. in vitro. Agricultural Revolution Journal. 1(1):41–46. DOI: https://doi.org/10.64570/agrivolution.v1i1.12.

Yudha EP, Vanessa GC. 2022. Analisis kinerja ekspor cabai hijau di Indonesia. Jurnal Apresiasi Ekonomi. 10(3):340–345. DOI: https://doi.org/10.31846/jae.v10i3.506.

Zulfiqar F. 2021. Effect of seed priming on horticultural crops. Scientia Horticulturae. 286(1):110197. DOI: https://doi.org/10.1016/j.scienta.2021.110197.

Published

2025-12-31

Issue

Section

Articles

How to Cite

Basri, M. ., Tondok, E. T. ., & Giyanto. (2025). Potensi Aktinomiset Filoplan Asal Tumbuhan Solanaceae sebagai Agens Pengendali Hayati Phytophthora capsici pada Cabai: The Potential of Phyllospheric Actinomycetes from Solanaceae Plants as Biocontrol Agents of Phytophthora capsici on Chili Pepper. Jurnal Fitopatologi Indonesia, 21(1), 64-77. https://doi.org/10.14692/jfi.21.1.64-77