Induksi Ketahanan Tanaman Tomat terhadap Ralstonia syzygii subsp. indonesiensis Menggunakan Bakteri Endofit dan Asam Salisilat

Induction of Resistance in Tomato Plants Against Ralstonia syzygii subsp. indonesiensis Using Endophytic Bacteria and Salicylic Acid

Authors

  • Triwanto Nababan Agrotechnology, Faculty of Agriculture, Universitas Sumatera Utara
  • Lisnawita Lisnawita Agrotechnology, Faculty of Agriculture, Universitas Sumatera Utara
  • Irda Safni Agrotechnology, Faculty of Agriculture, Universitas Sumatera Utara

DOI:

https://doi.org/10.14692/jfi.20.6.263-275

Keywords:

Arthrobacter sp., Bacillus thuringiensis, biological control, wilt disease

Abstract

Induction of Resistance in Tomato Plants Against Ralstonia syzygii subsp. indonesiensis Using Endophytic Bacteria and Salicylic Acid

Ralstonia syzygii subsp. indonesiensis causes bacterial wilt disease in tomato plants. This pathogen is difficult to control because the pathogen can persist in residual host material, and soil, and easily spread through water and infected plant tissue systemically. There are no chemical pesticides available to control bacterial wilt pathogens. Therefore, the alternative is biological control using endophytic bacteria and salicylic acid. Two endophytic bacteria, namely Arthrobacter sp. and Bacillus thuringiensis, as well as salicylic acid, were used in research singly or in combination to evaluate their potential in inducing tomato plant resistance in suppressing the bacterial wilt disease R. syzygii subsp. indonesiensis. The research uses a non-factorial completely randomized design with 14 single and combination treatments. Each treatment consisted of three experimental units and was repeated three times. The results showed the combination of Arthrobacter sp. and salicylic acid applied once a week (ABAS1) was the most effective treatment in inducing tomato resistance. Evidenced by the longest incubation period, low incidence and disease severity, increased peroxidase, polyphenol oxidase activity, and xylem tissue was not predominantly colonized by pathogens in histopathological observations.

Downloads

Download data is not yet available.

References

Acharya K, Chakraborty N, Dutta AK, Sarkar S, Acharya R. 2011. Signaling role of nitric oxide in the induction of plant defense by exogenous application of abiotic inducers. Archives Phytopathology and Plant Protection. 44(15):1501–1511. DOI: https://doi.org/10.1080/03235408.2010.507943.

Agrios GN. 2005. Plant Pathology. Ed ke-5. San Diego (CA): Academic Press.

Aliye N, Fininsa C, Hiskias Y. 2008. Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biological Control. 47(3):282–288. DOI: https://doi.org/10.1016/j.biocontrol.2008.09.003.

Bano H, Athar HUR, Zafar ZU,Ogbaga CC, Ashraf M. 2021. Peroxidase activity and operation of photo‐protective component of NPQ play key roles in drought tolerance of mung bean Vigna radiata (L.) Wilcziek. Physiologia Plantarum. 172(2):603–614. DOI: https://doi.org/10.1111/ppl.13337.

Beattie GA, Hatfield BM, Dong H, McGrane RS. 2018. Seeing the light: The roles of red-and blue-light sensing in plant microbes. Annual Review of Phytopathology. 56(1):41–66. DOI: https://doi.org/10.1146/annurev-phyto-080417-045931.

Berger B, Patz S, Ruppel S, Dietel K, Faetke S, Junge H, Becker M. 2018. Successful formulation and application of plant growth-promoting Kosakonia radicincitans in maize cultivation. BioMed Research International. 2018:1–8. DOI: https://doi.org/10.1155/2018/6439481.

Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A. 2014. Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology. 27:30–37. DOI: https://doi.org/10.1016/j.copbio.2013.09.012.

Burkett-Cadena M, Kokalis-Burelle N, Lawrence KS, Van Santen E, Kloepper JW. 2008. Suppressiveness of root knot nematodes mediated by rhizobacteria. Biological Control. 47(1):55–59. DOI: https://doi.org/10.1016/j.biocontrol.2008.07.008.

[BPS Sumut] Badan Pusat Statistik Sumatera Utara. 2021. Produksi Tanaman Sayuran menurut Kabupaten/Kota dan Jenis Tanaman di Provinsi Sumatera Utara (Kwintal). https://sumut.bps.go.id/indicator/55/541/1. [diakses 23 Nov 2023].

[CABI] Centre for Agriculture and Biosciences International. 2012. Ralstonia solanacearum. https://www.cabidigitallibrary.org/doi/full/10.5555/20123085113 [diakses 23 Nov 2023].

Cabrera VA, Doucet ME, Lax P. 2023. Histopathology of the root-knot nematode, Meloidogyne incognita, on ornamental plants (Crassulaceae). Journal of Plant Diseases and Protection. 130(4):891–897. DOI: https://doi.org/10.1007/s41348-023-00726-8.

Caldwell D, Kim BS, Iyer-Pascuzzi AS. 2017. Ralstonia solanacearum differentially colonizes roots of resistant and susceptible tomato plants. Phytopathology. 107(5):528–536. DOI: https://doi.org/10.1094/PHYTO-09-16-0353-R.

Cherif-Silini H, Silini A, Yahiaoui B, Ouzari I, Boudabous A. 2016. Phylogenetic and plant growth promoting characteristics of Bacillus isolated from the wheat rhizosphere. Annals of Microbiology. 66(3):1087–1097. DOI: https://doi.org/10.1007/s13213-016-1194-6.

Deenamo N, Kuyyogsuy A, Khompatara K, Chanwun T, Ekchaweng K, Churngchow N. 2018. Salicylic acid induces resistance in rubber tree against Phytophthora palmivora. International Journal of Molecular Sciences. 19(7):1883. DOI: https://doi.org/10.3390/ijms19071883.

Eid HT, Abbas MS, Soliman AS, Mahmoud NA, Abou-Zeid NM. 2018. Induction of systemic resistance against tomato root rot disease under greenhouse conditions. Zagazig Journal of Agricultural Research. 45(3):931–944. DOI: https://doi.org/10.21608/zjar.2018.49135.

Etesami H, Maheshwari DK. 2018. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety. 156:225–246. DOI: https://doi.org/10.1016/j.ecoenv.2018.03.013.

Graskova IA, Borovskii GB, Kolesnichenko AV, Voinikov VK. 2004. Peroxidase as a component of the signaling pathway in potato cells during ring rot infection. Russian Journal of Plant Physiology. 51:621–626. DOI: https://doi.org/10.1023/B:RUPP.0000040747.61131.a9.

Grimault V, Prior P, Anais, G. 1995. A monogenic dominant resistance of tomato to bacterial wilt in Hawaii-7996 is associated with plant colonization by Pseudomonas solanacearum. Journal of Phytopathology. 143(6):349–352. DOI: https://doi.org/10.1111/j.1439-0434.1995.tb00274.x

Guo D, Xia M, Wei X, Chang W, Liu Y, Wang Z. 2008. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist. 180(3):673–683. DOI: https://doi.org/10.1111/j.1469-8137.2008.02573.x.

Hammerschmidt R, Nuckles EM, Kuć J. 1982. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology. 20(1):73–82. DOI: https://doi.org/10.1016/0048-4059(82)90025-X.

Hol WG, Bezemer TM, Biere A. 2013. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Frontiers in Plant Science. 4:1–9. DOI: https://doi.org/10.3389/fpls.2013.00081.

Horváth E, Szalai G, Janda T. 2007. Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation. 26:290–300. DOI: https://doi.org/10.1007/s00344-007-9017-4.

Hyakumachi M, Mitsuyoshi N, Tatsuyuki A, Shinichiro A, Shigenobu Y, Seiya T, Hideki T. 2013. Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato. Microbes Environments. 28:128–134. DOI: https://doi.org/10.1264/jsme2.me12162

Igarashi Y, Yamamoto K, Fukuda T, Shojima A, Nakayama, J, Carro L, Trujillo ME. 2015. Arthroamide, a cyclic depsipeptide with quorum sensing inhibitory activity from Arthrobacter sp. Journal of Natural Products. 78(11):2827–283. DOI: https://doi.org/10.1021/acs.jnatprod.5b00540.

Khan A, Singh J, Upadhayay VK, Singh AV, Shah S. 2019. Microbial biofortification: a green technology through plant growth promoting microorganisms. Di dalam: Shah S, Venkatramanan V, Prasad R, editor. Sustainable Green Technologies for Environmental Management. Singapore (SG): Springer. hlm. 255–269. DOI: https://doi.org/10.1007/978-981-13-2772-8_13.

Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA. 2015. Salicylic acid induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science. 6:462. DOI: https://doi.org/10.3389/fpls.2015.00462.

Kim SG, Hur OS, Ro NY, Ko HC, Rhee JH, Sung JS, Ryu KY, Lee SY, Baek HJ. 2016. Evaluation of resistance to Ralstonia solanacearum in tomato genetic resources at seedling stage. The Plant Pathology Journal. 32(1):58–64. DOI: https://doi.org/10.5423%2FPPJ.NT.06.2015.0121.

Lebeau A, Daunay MC, Frary A, Palloix A, Wang JF, Dintinger J, Chiroleu F, Wicker E, Prior P. 2011. Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology. 101(1):154–165. DOI: https://doi.org/10.1094/PHYTO-02-10-0048.

Leiwakabessy C, Sinaga MS, Mutaqin KH, Trikoesoemaningtyas T, Giyanto. 2017. Asam salisilat sebagai penginduksi ketahanan tanaman padi terhadap penyakit hawar daun bakteri. Jurnal Fitopatologi Indonesia. 13(6):207–215.

Li L, Steffens JC. 2002. Over expression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta. 215:239–247. DOI: https://doi.org/10.1007/s00425-002-0750-4.

Lobo CB, Tomás MS, Viruel E, Ferrero MA, Lucca ME. 2019. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiological Research. 219:12–25. DOI: https://doi.org/10.1016/j.micres.2018.10.012.

Luo M, Purdy H, Avis TJ. 2019. Compost bacteria provide antifungal activity against grey mold and Alternaria rot on bell pepper fruit. Botany. 97(3):221–230. DOI: https://doi.org/10.1139/cjb-2018-0180.

Maksimov IV, Abizgil’Dina RR, Pusenkova LI. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Applied Biochemistry and Microbiology. 47:333–345. DOI: https://doi.org/10.1134/S0003683811040090.

Manickam R, Chen JR, Sotelo-Cardona P, Kenyon L, Srinivasan R. 2021. Evaluation of different bacterial wilt resistant eggplant rootstocks for grafting tomato. Plants. 10(75):1–12. DOI: https://doi.org/10.3390/plants10010075.

Mandal S, Mallick N, Mitra A. 2009. Salicylic acid-induced resistance to Fusarium oxysporum f.sp. lycopersici in tomato. Plant Physiology and Biochemistry. 47(7):642–649. DOI: https://doi.org/10.1016/j.plaphy.2009.03.001.

Mayer AM, Harel E, Ben-Shaul R. 1966. Assay of catechol oxidase—a critical comparison of methods. Phytochemistry. 5(4):783–789. DOI: https://doi.org/10.1016/S0031-9422(00)83660-2.

Mohamed R, Groulx E, Defilippi S, Erak T, Tambong JT, Tweddell RJ, Tsopmo A, Avis TJ. 2017. Physiological and molecular characterization of compost bacteria antagonistic to soil‐borne plant pathogens. Canadian Journal of Microbiology. 63(5):411–426. DOI: https://doi.org/10.1139/cjm-2016-0599.

Nair AB, Umamaheswaran K. 2016. Enzymatic responses to SriLankan cassava mosaic virus infection in cassava plants after grafting. International Journal of Applied and Pure Science and Agriculture. 2:165–170.

Palma L, Muñoz D, Berry C, Murillo J, Caballero P. 2014. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins. 6(12):3296–3325. DOI: https://doi.org/10.3390/toxins6123296.

Safni I, Cleenwerk I, De VP, Fegan M, Sly L, Kappler U. 2014. Polyphasic taxonomic revision of the Ralstonia solanacearum spesies complex: Proposal to emend the description of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. sonalacearum phylotipe IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., Banana Blood Disease Bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov., and R. solanacearum phylotipe I and III strains as Ralstonia pseudosolanacearum sp. nov. International Journal of Systematic and Evolutionary Microbiology. 64(Pt_9):3087–3103. DOI: https://doi.org/10.1099/ijs.0.066712-0.

Shah J. 2003. The salicylic acid loop in plant defense. Current Opinion in Plant Biology. 6(4):365-371. DOI: https://doi.org/10.1016/S1369-5266(03)00058-X.

Sujoko A, Lutfi M, Purnomo D. 2015. Kajian sterilisasi media tumbuh jamur tiram putih (Pleurotus Ostreatus (L) Fries) menggunakan steamer baglog. Jurnal Keteknikan Pertanian Tropis dan Biosistem. 3(3):303–314.

Susanna S, Chamzurni T, Pratama A. 2010. Dosis dan frekuensi kascing untuk pengendalian penyakit layu fusarium pada tanaman tomat. Jurnal Floratek. 5(2):152–163. DOI: https://jurnal.usk.ac.id/floratek/article/view/400/384.

Takahashi H, Nakaho K, Ishihara T, Ando S, Wada T, Kanayama Y, Asano S, Yoshida S, Tsushima S, Hyakumachi M. 2014. Transcriptional profile of tomato roots exhibiting Bacillus thuringiensis induced resistance to Ralstonia solanacearum. Plant Cell Reports. 33:99–110. DOI: https://doi.org/10.1007/s00299-013-1515-1.

Van der Plank JE. 1963. Plant Diseases: Epidemics and Control. Elsevier Science. New York (US): Academic Press.

Vidal-Quist JC, Rogers HJ, Mahenthiralingam E, Berry C. 2013. Bacillus thuringiensis colonises plant roots in a phylogeny-dependent manner. FEMS Microbiology Ecology. 86(3):474–489. DOI: https://doi.org/10.1111/1574-6941.12175.

Winstead NN, Kelman A. 1952. Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Phytopathology. 42(11):628–634.

Published

2025-06-13

How to Cite

Nababan, T. ., Lisnawita, L., & Safni, I. . (2025). Induksi Ketahanan Tanaman Tomat terhadap Ralstonia syzygii subsp. indonesiensis Menggunakan Bakteri Endofit dan Asam Salisilat : Induction of Resistance in Tomato Plants Against Ralstonia syzygii subsp. indonesiensis Using Endophytic Bacteria and Salicylic Acid. Jurnal Fitopatologi Indonesia, 20(6), 263-275. https://doi.org/10.14692/jfi.20.6.263-275