Genomic Signatures of Positive Selection and Local Adaptation in Ethiopian Sheep Populations
Abstract
Domestic sheep (Ovis aries) have adapted to diverse ecological regions and exhibit various phenotypic traits through long-term natural and artificial selection. Indigenous sheep populations, in particular, have developed valuable traits such as disease resistance, heat tolerance, and resilience to harsh environments. Understanding the genetic mechanisms underlying these adaptive traits is crucial for enhancing, sustainably utilizing, and conserving sheep genetic resources. In this study, we aimed to assess genomic selection among five Ethiopian indigenous sheep populations sampled from various ecological regions. Whole blood samples were randomly collected from 48 sheep representing two populations (Semien and Selale) from different ecological regions and genotyped using the Ovine 50K SNP BeadChip. Genotype data from three Ethiopian sheep populations was additionally included in the analyses. Fixation index (FST) and cross-population extended haplotype homozygosity (XPEHH) methods were used to detect signatures of positive selection. Functional analysis revealed genes related to plateau adaptation, immune response, and tail fat formation. Our study identified potential genes associated with alpine and sub-alpine adaptation, including GABRG3, SYT1, TGFBR3, ITPR2, KCNMB2, and ATP1A3. Candidate genes linked with wet highland adaptation, including GNB1, HDAC9, IGFBP6, JAKMIP1, PAK2, and EXOC4, were also detected as under selection. The BMP2 gene, known for its fundamental role in sheep adipose tissue, emerged as a positional candidate gene for tail fat formation. This study offers novel insight into genomic adaptation to alpine, sub-alpine, and wet highland ecological regions in sheep and provides a valuable resource for further investigation. Moreover, it contributes worthwhile information for sustainable conservation and utilization, and lays the groundwork for future research into the genetic mechanisms behind sheep adaptability to diverse ecological regions.
Full text article
References
Abera, B., Kebede, K., Gizaw, S., & Feyera, T. (2014) On-farm phenotypic characterization of indigenous sheep types in Selale Area, Central Ethiopia. Journal Veterinary Science Technology, 5, 180. https://doi.org/10.4172/2157-7579.1000180
Ahbara, A., Bahbahani, H., Almathen, F., Abri, M. Al, Agoub, M. O., Abeba, A., Kebede, A., Musa, H. H., Mastrangelo, S., Pilla, F., Ciani, E., Hanotte, O., & Mwacharo, J. M. (2019). Genome-wide variation, candidate regions and genes associated with fat deposition and tail morphology in Ethiopian indigenous sheep. Frontiers in Genetics, 10(JAN). https://doi.org/10.3389/fgene.2018.00699
Ahmadabadi, S. A. A. J., Askari-Hemmat, H., Mohammadabadi, M., Fozi, M. A., & Mansouri, M. (2023). The effect of Cannabis seed on DLK1 gene expression in heart tissue of Kermani lambs. Agricultural Biotechnology Journal, 15(1).
Alberto, F. J., Boyer, F., Orozco-Terwengel, P., Streeter, I., Servin, B., De Villemereuil, P., Benjelloun, B., Librado, P., Biscarini, F., Colli, L., Barbato, M., Zamani, W., Alberti, A., Engelen, S., Stella, A., Joost, S., Ajmone-Marsan, P., Negrini, R., Orlando, L., Rezaei, H. R., Naderi, S., Clarke, L., Flicek, P., Wincker, P., Coissac, E., Kijas, J., Tosser-Klopp, G., Chikhi, A., Bruford, M. W., Taberlet, P., & Pompanon, F. (2018). Convergent genomic signatures of domestication in sheep and goats. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03206-y
Alexander, D. H., & Lange, K. (2011). Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 12. https://doi.org/10.1186/1471-2105-12-246
Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9), 1655–1664. https://doi.org/10.1101/gr.094052.109
Barthelme, J. W. (1985). Into food production - fisher-hunters and neolithic pastoralists in East Turkana, Kenya. The Journal of African History, 27(1). https://doi.org/10.1017/s0021853700029297
Berman, A. (2011). Invited review: Are adaptations present to support dairy cattle productivity in warm climates? Journal of Dairy Science, 94 (5). https://doi.org/10.3168/jds.2010-3962
Bettencourt, E. M. V., Tilman, M., Narciso, V., da Silva Carvalho, M. L., & de Sousa Henriques, P. D. (2015). The livestock roles in the wellbeing of rural communities of Timor-Leste. Revista de Economia e Sociologia Rural, 53, S063–S080. https://doi.org/10.1590/1234-56781806-94790053s01005
Brito, L. F., Kijas, J. W., Ventura, R. V., Sargolzaei, M., Porto-Neto, L. R., Cánovas, A., Feng, Z., Jafarikia, M., & Schenkel, F. S. (2017). Genetic diversity and signatures of selection in various goat breeds revealed by genome-wide SNP markers. BMC Genomics, 18(1). https://doi.org/10.1186/s12864-017-3610-0
Cadzow, M., Boocock, J., Nguyen, H. T., Wilcox, P., Merriman, T. R., & Black, M. A. (2014). A bioinformatics workflow for detecting signatures of selection in genomic data. Frontiers in Genetics, 5(AUG). https://doi.org/10.3389/fgene.2014.00293
Cao, Y. H., Xu, S. S., Shen, M., Chen, Z. H., Gao, L., Lv, F. H., Xie, X. L., Wang, X. H., Yang, H., Liu, C. Bin, Zhou, P., Wan, P. C., Zhang, Y. S., Yang, J. Q., Pi, W. H., Hehua, Ee., Berry, D. P., Barbato, M., Esmailizadeh, A., Nosrati, M., Salehian-Dehkordi, H., Dehghani-Qanatqestani, M., Dotsev, A. V., Deniskova, T. E., Zinovieva, N. A., Brem, G., Štěpánek, O., Ciani, E., Weimann, C., Erhardt, G., Mwacharo, J. M., Ahbara, A., Han, J.-L., Hanotte, O. , Miller, J. M., Sim, Z., Coltman, D., Kantanen, J., Bruford, M. W., Lenstra, J. A., Kijas, J., & Li, M. H. (2021). Historical introgression from wild relatives enhanced climatic adaptation and resistance to pneumonia in sheep. Molecular Biology and Evolution, 38(3). https://doi.org/10.1093/molbev/msaa236
Chen, C., Zhu, B., Tang, X., Chen, B., Liu, M., Gao, N., Li, S., & Gu, J. (2023). Genome-wide assessment of runs of homozygosity by whole-genome sequencing in diverse horse breeds worldwide. Genes, 14(6). https://doi.org/10.3390/genes14061211
Chen, Y., Meng, F., Wang, B., He, L., Liu, Y., & Liu, Z. (2018). Dock2 in the development of inflammation and cancer. European Journal of Immunology, 48(6), 915–922. https://doi.org/10.1002/eji.201747157
Chi, W., Ma, X., Niu, J., & Zou, M. (2017). Genome-wide identification of genes probably relevant to the adaptation of schizothoracins (Teleostei: Cypriniformes) to the uplift of the Qinghai-Tibet Plateau. BMC Genomics, 18(1). https://doi.org/10.1186/s12864-017-3703-9
Demirci, S., Koban Baştanlar, E., Daǧtaş, N. D., Pişkin, E., Engin, A., Özer, F., Yüncü, E., Doǧan, Ş. A., & Togan, I. (2013). Mitochondrial DNA diversity of modern, ancient and wild sheep (Ovis gmelinii anatolica) from Turkey: New insights on the evolutionary history of sheep. PLoS ONE, 8(12). https://doi.org/10.1371/journal.pone.0081952
Ding, Y., Li, Y., Chen, Q., & Niu, B. (2018). Advances in antidiabetic drugs targeting insulin secretion. Current Pharmaceutical Design, 24(34). https://doi.org/10.2174/1381612824666181112113756
Edea, Z., Dadi, H., Dessie, T., & Kim, K. (2019). Genomic signatures of high ‑ altitude adaptation in Ethiopian sheep populations. Genes & Genomics, 41(8), 973–981. https://doi.org/10.1007/s13258-019-00820-y
Edea, Z., Dessie, T., Dadi, H., Do, K. T., & Kim, K. S. (2017). Genetic diversity and population structure of Ethiopian sheep populations revealed by high-density SNP markers. Frontiers in Genetics, 8(DEC). https://doi.org/10.3389/fgene.2017.00218
FAO. (2018). Ethiopia: small family farms country factsheet. In FAO Animal Production and Health Guidlines. 1–2.
Flori, L., Moazami-Goudarzi, K., Alary, V., Araba, A., Boujenane, I., Boushaba, N., Casabianca, F., Casu, S., Ciampolini, R., Coeur D’Acier, A., Coquelle, C., Delgado, J. V., El-Beltagi, A., Hadjipavlou, G., Jousselin, E., Landi, V., Lauvie, A., Lecomte, P., Ligda, C., Marinthe, C., Martinez, A., Mastrangelo, S., Menni, D., Moulin, C.-H., Osman, M.-A., Pineau, O., Portolano, B., Rodellar, C., Saïdi-Mehtar, N., Sechi, T., Sempéré, G., Thévenon, S., Tsiokos, D., Laloë, D., & Gautier, M. (2019). A genomic map of climate adaptation in Mediterranean cattle breeds. Molecular Ecology, 28(5). https://doi.org/10.1111/mec.15004
Fujimoto, B. A., Young, M., Carter, L., Pang, A. P. S., Corley, M. J., Fogelgren, B., & Polgar, N. (2019). The exocyst complex regulates insulin-stimulated glucose uptake of skeletal muscle cells. American Journal of Physiology - Endocrinology and Metabolism, 317(6). https://doi.org/10.1152/ajpendo.00109.2019
Gautier, A. (2006). The Evidence for the Earliest Livestock in North Africa: or Adventures with Large Bovids, Ovicaprids, Dogs and Pigs. In: Hassan, F.A. (eds) Droughts, Food and Culture. Springer, Boston, MA. https://doi.org/10.1007/0-306-47547-2_12
Gautier, M., & Vitalis, R. (2012). Rehh An R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics, 28(8). https://doi.org/10.1093/bioinformatics/bts115
Gizaw, S., Komen, H., & Hanotte, O. (2008). Indigenous sheep resources of Ethiopia : types , production systems and farmers preferences. December 2020. https://doi.org/10.1017/S1014233900002704
Gizaw, S., Van Arendonk, J. A. M., Komen, H., Windig, J. J., & Hanotte, O. (2007). Population structure, genetic variation and morphological diversity in indigenous sheep of Ethiopia. Animal Genetics, 38(6). https://doi.org/10.1111/j.1365-2052.2007.01659.x
Haberland, M., Arnold, M. A., McAnally, J., Phan, D., Kim, Y., & Olson, E. N. (2007). Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation. Molecular and Cellular Biology, 27(2). https://doi.org/10.1128/mcb.01415-06
Haile, A., Mirkena, T., Duguma, G., Wurzinger, M., Rischkowsky, B., Tibbo, M., Okeyo, M., & Sölkner, J. (2013). Community based sheep breeding programs: Tapping into indigenous knowledge. Livestock Research for Rural Development, 25(12).
Hohenlohe, P. A., Phillips, P. C., & Cresko, W. A. (2010). Using population genomics to detect selection in natural populations: Key concepts and methodological considerations. International Journal of Plant Sciences, 171(9). https://doi.org/10.1086/656306
Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1). https://doi.org/10.1038/nprot.2008.211
Kalds, P., Luo, Q., Sun, K., Zhou, S., Chen, Y., & Wang, X. (2021). Trends towards revealing the genetic architecture of sheep tail patterning: Promising genes and investigatory pathways. Animal Genetics, 52(6). https://doi.org/10.1111/age.13133
Li, X., Yang, J., Shen, M., Xie, X. L., Liu, G. J., Xu, Y. X., Lv, F. H., Yang, H., Yang, Y. L., Liu, C. Bin, Zhou, P., Wan, P. C., Zhang, Y. S., Gao, L., Yang, J. Q., Pi, W. H., Ren, Y. L., Shen, Z. Q., Wang, F., Deng, J., Xu, S.-S., Salehian-Dehkordi, H., Hehua, E., Esmailizadeh, A., Dehghani-Qanatqestani, M., Štěpánek, O., Weimann, C., Erhardt, G., Amane, A., Mwacharo, J. M., Han, J.-L., Hanotte, O., Lenstra, J. A., Kantanen, J., Coltman, D. W., Kijas, J. W., Bruford, M. W., Periasamy, K., Wang, X.-H. & Li, M. H. (2020). Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16485-1
Liso, A., Capitanio, N., Gerli, R., & Conese, M. (2018). From fever to immunity: A new role for IGFBP-6? Journal of Cellular and Molecular Medicine, 22(10). https://doi.org/10.1111/jcmm.13738
Liu, Z., Ji, Z., Wang, G., Chao, T., Hou, L., & Wang, J. (2016). Genome-wide analysis reveals signatures of selection for important traits in domestic sheep from different ecoregions. BMC Genomics, 17(1). https://doi.org/10.1186/s12864-016-3212-2
Lyu, Y., Guan, X., Xu, X., Wang, P., Li, Q., Panigrahi, M., Zhang, J., Chen, N., Huang, B., & Lei, C. (2023). A whole genome scan reveals distinct features of selection in Zhaotong cattle of Yunnan province. Animal Genetics, 54(6). https://doi.org/10.1111/age.13363
MacDonald, K. C., & MacDonald, R. H. (2006). The origins and development of domesticated animals in arid West Africa. In The origins and development of African livestock (pp. 127-162). Routledge.
Manalo, D. J., Rowan, A., Lavoie, T., Natarajan, L., Kelly, B. D., Ye, S. Q., Garcia, J. G. N., & Semenza, G. L. (2005). Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood, 105(2). https://doi.org/10.1182/blood-2004-07-2958
Mariadassou, M., Ramayo-Caldas, Y., Charles, M., Féménia, M., Renand, G., & Rocha, D. (2020). Detection of selection signatures in Limousin cattle using whole-genome resequencing. Animal Genetics, 51(5). https://doi.org/10.1111/age.12982
Marshall, F. (2000). The origins and spread of domestic animals in East Africa. The origins and Development of African Livestock (pp. 191–221). Routledge.
Mohammadabadi, M., Ivanivna, O. B., Borshch, O., Kalashnyk, O., Ievstafiieva, Y., & Buchkovska, V. (2024). Measurement of the relative expression pattern of the UCP2 gene in different tissues of the Raini Cashmere goat. Agricultural Biotechnology Journal, 16(3), 317–332. https://doi.org/10.22103/JAB.2024.24337.1627
Moioli, B., Pilla, F., & Ciani, E. (2015). Signatures of selection identify loci associated with fat tail in sheep. Journal of Animal Science, 93(10). https://doi.org/10.2527/jas.2015-9389
Moradi, M. H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K. G., & McEwan, J. C. (2012). Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genetics, 13. https://doi.org/10.1186/1471-2156-13-10
Muigai, A. W. T., & Hanotte, O. (2013). The origin of African sheep: archaeological and genetic perspectives. African Archaeological Review, 30(1). https://doi.org/10.1007/s10437-013-9129-0
Negassa, A., & MJabbar, M. (2008). Livestock ownership, commercial off-take rates and their determinants in Ethiopia. ILRI (aka ILCA and ILRAD).
Nejati-Javaremi, A., Izadi, F., Rahimi, G., & Moradi, M. (2007). Selection in fat-tailed sheep based on two traits of fat-tail and body weight versus single-trait total body weight. International Journal of Agriculture & Biology, January, 645–648.
Oguchi, T., Suzuki, N., Hashimoto, S., Chaudhry, G. A., Chaudhry, F. A., Usami, S. ichi, & Ottersen, O. P. (2012). Inner hair cells of mice express the glutamine transporter SAT1. Hearing Research, 292(1–2). https://doi.org/10.1016/j.heares.2012.07.005
Ogura, M., Takarada, T., Nakamichi, N., Kawagoe, H., Sako, A., Nakazato, R., & Yoneda, Y. (2011). Exacerbated vulnerability to oxidative stress in astrocytic C6 glioma cells with stable overexpression of the glutamine transporter slc38a1. Neurochemistry International, 58(4). https://doi.org/10.1016/j.neuint.2011.01.007
Oleksyk, T. K., Smith, M. W., & O’Brien, S. J. (2010). Genome-wide scans for footprints of natural selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537). https://doi.org/10.1098/rstb.2009.0219
Phee, H., Au-Yeung, B. B., Pryshchep, O., O’Hagan, K. L., Fairbairn, S. G., Radu, M., Kosoff, R., Mollenauer, M., Cheng, D., Chernoff, J., & Weiss, A. (2014). Pak2 is required for actin cytoskeleton remodeling, TCR signaling, and normal thymocyte development and maturation. ELife, 2014(3). https://doi.org/10.7554/eLife.02270
Porter, V. (2020). Mason’s world dictionary of livestock breeds, types and varieties (6th ed.). CABI. https://doi.org/10.1079/9781789241532.0000
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., De Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559–575. https://doi.org/10.1086/519795
Ruiz, R., & Tabares, L. (2014). Neurotransmitter release in motor nerve terminals of a mouse model of mild spinal muscular atrophy. Journal of Anatomy, 224(1). https://doi.org/10.1111/joa.12038
Ruiz-Ojeda, F. J., Méndez-Gutiérrez, A., Aguilera, C. M., & Plaza-Díaz, J. (2019). Extracellular matrix remodeling of adipose tissue in obesity and metabolic diseases. International Journal of Molecular Sciences, 20(19). https://doi.org/10.3390/ijms20194888
Saadatabadi, L. M., Mohammadabadi, M., Nanaei, H. A., Ghanatsaman, Z. A., Stavetska, R. V., Kalashnyk, O., Kochuk-Yashchenko, O. A., & Kucher, D. M. (2023). Unraveling candidate genes related to heat tolerance and immune response traits in some native sheep using whole genome sequencing data. Small Ruminant Research, 225, 107018. https://doi.org/10.1016/j.smallrumres.2023.107018
Tang, H., Peng, J., Wang, P., & Risch, N. J. (2005). Estimation of individual admixture: Analytical and study design considerations. Genetic Epidemiology, 28(4), 289–301. https://doi.org/10.1002/gepi.20064
Tang, K., Thornton, K. R., & Stoneking, M. (2007). A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biology, 5(7). https://doi.org/10.1371/journal.pbio.0050171
Tejero, R., Lopez-Manzaneda, M., Arumugam, S., & Tabares, L. (2016). Synaptotagmin-2, and -1, linked to neurotransmission impairment and vulnerability in Spinal Muscular Atrophy. Human Molecular Genetics, 25(21). https://doi.org/10.1093/hmg/ddw297
Touyz, R. M., Alves-Lopes, R., Rios, F. J., Camargo, L. L., Anagnostopoulou, A., Arner, A., & Montezano, A. C. (2018). Vascular smooth muscle contraction in hypertension. In Cardiovascular Research, 114 (4). https://doi.org/10.1093/cvr/cvy023
Urschel, K. L., Escobar, J., McCutcheon, L. J., & Geor, R. J. (2014). Insulin infusion stimulates whole-body protein synthesis and activates the upstream and downstream effectors of mechanistic target of rapamycin signaling in the gluteus medius muscle of mature horses. Domestic Animal Endocrinology, 47(1). https://doi.org/10.1016/j.domaniend.2013.11.002
Wei, C., Wang, H., Liu, G., Zhao, F., Kijas, J. W., Ma, Y., Lu, J., Zhang, L., Cao, J., Wu, M., Wang, G., Liu, R., Liu, Z., Zhang, S., Liu, C., & Du, L. (2016). Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Scientific Reports, 6. https://doi.org/10.1038/srep26770
Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38(6). https://doi.org/10.2307/2408641
Wickham, H. (2009). ggplot2: Elegant graphics for data analysis - Bookreview. Journal of Statistical Software, 35(July), 1–3. https://doi.org/10.18637/jss.v035.b01
Xu, Z., Ji, C., Zhang, Y., Zhang, Z., Nie, Q., Xu, J., Zhang, D., & Zhang, X. (2016). Combination analysis of genome-wide association and transcriptome sequencing of residual feed intake in quality chickens. BMC Genomics, 17(1). https://doi.org/10.1186/s12864-016-2861-5
Yang, J., Li, W. R., Lv, F. H., He, S. G., Tian, S. L., Peng, W. F., Sun, Y. W., Zhao, Y. X., Tu, X. L., Zhang, M., Xie, X. L., Wang, Y. T., Li, J. Q., Liu, Y. G., Shen, Z. Q., Wang, F., Liu, G. J., Lu, H. F., Kantanen, J., Han, J. L., Li, M. H., & Liu, M. J. (2016). Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Molecular Biology and Evolution, 33(10). https://doi.org/10.1093/molbev/msw129
Zhao, F., Deng, T., Shi, L., Wang, W., Zhang, Q., Du, L., & Wang, L. (2020). Genomic scan for selection signature reveals fat deposition in chinese indigenous sheep with extreme tail types. Animals, 10(5). https://doi.org/10.3390/ani10050773
Zhu, C., Fan, H., Yuan, Z., Hu, S., Ma, X., Xuan, J., Wang, H., Zhang, L., Wei, C., Zhang, Q., Zhao, F., & Du, L. (2016). Genome-wide detection of CNVs in Chinese indigenous sheep with different types of tails using ovine high-density 600K SNP arrays. Scientific Reports, 6(June), 1–9. https://doi.org/10.1038/srep27822
Authors
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.