Liquid Smoke as Fat Protector and Its Effect on Rumen Fermentation Characteristics and Microbial Activity
Abstract
This study was conducted to determine the effect of liquid smoke as a fat protector on unsaturated fatty acids (UFAs) and its effect on rumen fermentation characteristics and microbial activity. Crude palm oil (CPO) was mixed with Prosteo skim milk (1:2), then divided into three treatments i.e., crude palm oil without protection by liquid smoke as a control (P0), crude palm oil protected by 2.5% of liquid smoke (P1), and crude falm oil protected by 5.0% of liquid smoke (P2). For in vitro testing, 300 mg of the feed substrate (elephant grass and bran with the ratio of 60:40) was added with 5% of each crude palm oil preparation of P0, P1, and P2 and put in a fermentor syringe. Then, 30 mL of the mixture of rumen fluid and buffer-minerals solution (1:2) was added into each syringe fermentor and flushed with CO2. The fermentor syringes were incubated in a water bath at 39ᵒC for 48 hours. Variables measured were fatty acid composition, fermentation characteristics, and rumen microbial activity. The data were analyzed by the analysis of variance with a completely randomized design. The results showed that the protection of CPO with liquid smoke in P1 and P2 groups decreased saturated fatty acids (SFAs), but increased (p<0.01) monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), and CMCase activity. Protection of CPO with 2.5% of liquid smoke (P1) significantly increased (p<0.01) fermentation characteristics (NH3 content and pH). It can be concluded that the use of 2.5% of liquid smoke has a better effect on feed fats protection, because it can reduce hydrogenation, increase UFAs, and has no negative effects on fermentation characteristics and microbial activity.
References
Abuelfatah, K., A. B. Zuki., Y. M. Goh., A. Q. Sazili, & A. Abubakr. 2016. Effects of feeding the whole linseed on ruminal fatty acid composition and microbial population in goats. Anim. Nutr. 2: 323-328. https://doi.org/10.1016/j.aninu.2016.10.004
Anggraini, S. P. A., & S. Yuniningsih. 2017. Optimizing the usage of liquid smoke from coconut shells as natural preservative for fresh fish. IJCRG. 10: 14-20.
Behan, A. A., T. C. Loh., S. Fakurazi., U. Kaka., A. Kaka, & A. A. Samsudin. 2019. Effects of supplementation of rumen-protected fats on rumen ecology and digestibility of nutrients in sheep. Animals. 9: 1-18. https://doi.org/10.3390/ani9070400
Baltes, W., R. Wittkowski, I. Sochtig, H. Block, & L. Toth. 1981. Ingredients of smoke and smoke flavor preparations. In: The quality of foods and beverages (G. Charalambous & G. Inglett). Academic Press. New York. pp. 1-19. https://doi.org/10.1016/B978-0-12-169102-8.50007-6
Chinedu, E. E., E. C. Ebere, & A. C. Emeka. 2017. Quality assessment of palm oil from different palm oil local factories in Imo State, Nigeria. WSN. 88:152-167.
Dermiş, S., S. Can & B. Doğru. 2012. Determination of peroxide values of some fixed oils by using the mFOX method. Spectrosc. Lett. 45: 359-363. https://doi.org/10.1080/00387010.2012.666702
Dymińska, L., M. Calik, A. M. M. Albegar, A. Zając, K. Kostyń, J. Lorenc & J. Hanuza. 2017. Quantitative determination of the iodine values of unsaturated plant oils using infrared and Raman spectroscopy methods. Inter. J. Food Properties. 20: 2003-2015. https://doi.org/10.1080/10942912.2016.1230744
Famobuwa, O. E., H. O. Oloyede, & A. A. Agbowuro. 2016. Chemical changes in crude palm oil and refined palm kernel-oil employed in deep-frying. Pharm. Chem. J. 3: 1-7.
Frank, N. E. G., M. M. E. Albert, D. E. E. Laverdure, & K. Paul. 2011. Assessment of the quality of crude palm oil from smallholders in Cameroon. J. Stored Prod. Postharvest Res. 2:52-58.
Gupta, V. K., R. Parsad, L. M. Bhar, & B. N. Mandal. 2016. Statistical Analysis of Agricultural Experiments. Part-I: Single Factor Experiments. ICAR-Indian Agricultural Statistics Research Institute Library Avenue, Pusa, New Delhi.
Hadanu, R. & D. A. N. Apituley. 2016. Volatile compounds detected in coconut shell liquid smoke through pyrolysis at a fractioning temperature of 350-420 ᵒC. Makara J. Sci. 20: 95-100. https://doi.org/10.7454/mss.v20i3.6239
Halliwel, G., N. N. B. A. Wahab, & A. H. Patle. 1985. Chemical composition of endo 1,4-β-glucanase to cellulotic in Trichoderma koningii. J. App. Biochem. 7: 43-45.
Harfoot, C. G. & G. P. Hazlewood. 1997. Lipid metabolism in the rumen. In: The Rumen Microbial Ecosystem. 2nd ed. Hobson PN and Stewart CS (eds). London: Chapman & Hall, pp. 140-197. https://doi.org/10.1007/978-94-009-1453-7_9
Hartati. L., A. Agus, L. M. Yusiati, & B. P. Widyobroto. 2015. Free fatty acid concentration and carboxymethyl cellulase activity of some formulas of protected fat-protein tested in vitro. Anim. Prod. 17:92-96. https://doi.org/10.20884/1.anprod.2015.17.2.513
Hatta, M., S. Baco, S. Garantjang, & E. Abustam. 2018. Performance of Kacang Goat fattening intensive using complete feed with different levels of liquid smoke. Adv. Env. Biol. 12:17-20.
Japir, A. A., J. Salimon, D. Derawi, M. S. Bahadi, A. Shuja’a, & M. R. Yusop. 2017. Physicochemical characteristics of high free fatty acid crude palm oil. OCL. 24: 1-9. https://doi.org/10.1051/ocl/2017033
Jayanegara, A., S. P. Dewi, N. Laylli, E. B. Laconi, Nahrowi, & M. Ridla. 2016. Determination of cell wall protein from selected feedstuffs and its relationship with ruminal protein digestibility in vitro. Med. Pet. 39: 134-140. https://doi.org/10.5398/medpet.2016.39.2.134
Li, D., J. Q. Wang & D. P. Bu. 2012. Ruminal microbe of biohydrogenation of trans-vaccenic acid to stearic acid in vitro. BMC Research Notes. 5: 1-8. https://doi.org/10.1186/1756-0500-5-97
Liu, Y., S. Poon, E. Seeman, D. L. Hare, M. Bui, & S. Iuliano. 2019. Fat from dairy foods and ‘meat’ consumed within recommended levels is associated with favorable serum cholesterol levels in institutionalized older adults. J. Nutr. Sci. 8: 1-8. https://doi.org/10.1017/jns.2019.5
Mancini, A., E. Imperlini, E. Nigro, C. Montagnese, A. Daniele, S. Orrù, & P. Buono. 2015. Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules. 20: 17339-17361. https://doi.org/10.3390/molecules200917339
McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, C. A. Morgan, L. A. Sinclair, & R. G. Wilkinson. 2010. Animal Nutrition. 7th Ed. Pearson, London.
Menke, K. H. & Steingass, H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7-55.
Montazeri, N., A. C. M. Oliveira, B. H. Himelbloom, M. B. Leigh, & C. A. Crapo. 2013. Chemical characterization of commercial liquid smokeproducts. Food Sci. Nutr. 1:102-115. https://doi.org/10.1002/fsn3.9
Nielsen, S. S., Qian, M. C, & Pike, O. A. 2019. Gas chromatography; Fat characterization. In : Food Analysis Laboratory Manual (Nielsen, S. S). 3rd edition. Springer International Publishing, West Lafayette, IN, USA. p. 87-95; 185-192. https://doi.org/10.1007/978-3-319-44127-6_8
Nieto, G. & G. Ros. 2012. Modification of fatty acid composition in meat through diet: effect on lipid peroxidation and relationship to nutritional quality - A review. In: Lipid Peroxidation. Intech, London. pp. 239-258. https://doi.org/10.5772/51114
Nugraheni, Z. M., Hintono, A & Mangisah, I. 2015. Kandungan asam lemak tak jenuh telur akibat pemberian kayambang (Salvinia molesta) pada ransum ayam petelur. Anim. Agric. J. 4: 28-34.
Sampaio, K. A., R. Ceriani, S. M. Silua, T. Taham, & A. J. A. Meirelles. 2011. Steam deacidification of palm oil. Food and Bioprod. Process. 89: 383-390. https://doi.org/10.1016/j.fbp.2010.11.012
Scott, T. W., L. J. Cook, K. A. Ferguson, I. W. McDonald, R. A. Buchanan, & G. Loftus Hills. 1970. Production of polyunsaturated milk fat in domestic ruminants. Aust. J. Sci. 32: 291.
Seradj, A. R., H. Morazán, M. Fondevila, J. B. Liang, G. de la Fuente, & J. Balcells. 2019. In vitro and in situ degradation characteristics and rumen fermentation products of Moringa oleifera harvested at three different ages. Trop. Anim. Sci. J. 42: 39-45. https://doi.org/10.5398/tasj.2019.42.1.39
Sharma, H., R. Giriprasad, & M. Goswami. 2013. Animal fat-processing and its quality control. J. Food Process. Technol. 4: 2-5.
Soliman, G. A. 2018. Dietary cholesterol and the lack of evidence in cardiovascular disease. Review. Nutrients. 10: 1-14. https://doi.org/10.3390/nu10060780
Suharti, S., D. N. Aliyah, & Suryahadi. 2018. Karakteristik fermentasi rumen in vitro dengan penambahan sabun kalsium minyak nabati pada buffer yang berbeda. JINTP. 16: 56-64. https://doi.org/10.29244/jintp.16.3.56-64
Swenberg, J. A., B. C. Moeller, K. Lu, J. E. Rager, R. Fry, & T. B. Starr. 2013. Formaldehyde carcinogenicity research: 30 years and countingfor mode of action, epidemiology, and cancer risk assessment. Toxicol. Pathol. 41: 181-189. https://doi.org/10.1177/0192623312466459
Tiven, N. C., L. M. Yusiati, Rusman, & U. Santoso. 2011a. Protection of unsaturated fatty acid in crude palm oil from sheep. Med. Pet. 34: 42-48. https://doi.org/10.5398/medpet.2011.34.1.42
Tiven, N. C., L. M. Yusiati, Rusman, & U. Santoso. 2011b. Minimize the hydrogenation of unsaturated fatty acid in the rumen with formaldehyde. Indo. J. Chem. 11: 43-47. https://doi.org/10.22146/ijc.21418
Tiven, N. C. 2012. Keuntungan metode pengambilan cairan rumen menggunakan Trokar dari aspek kesejahteraan ternak. Wartazoa. 22: 194-201. https://10.14334/wartazoa.v22i4.969
Tiven, N. C., L. M. Yusiati, Rusman, & U. Santoso. 2012. Effect of crude palm oil protection on fermentation parameter and rumen microbial activity of male local lamb. Anim. Prod. 14: 141-146.
Tiven, N. C., L. M. Yusiati, Rusman, & U. Santoso. 2013. Effect of crude palm oil protection with formaldehyde on hydrogenation of rumen fluid unsaturated fatty acid: Its effect on blood and meat fatty acid. Indo. J. Chem. 13: 142-148. https://doi.org/10.22146/ijc.21297
Tiven, N. C., L. M. Yusiati, Rusman, & U. Santoso. 2015. The effect of CPO protected with formaldehyde on digestibility and performance of thin tail sheeps. Buletin Peternakan 39: 78-83. https://doi.org/10.21059/buletinpeternak.v39i2.6711
Tiven, N. C., I. P. Siwa, & L. Joris. 2016. Effects of citrus hystryx as fat protector on unsaturated fatty acids, cholesterol and chemical composition of lamb meat. J. Indonesian Trop. Anim. Agric. 41: 45-49. https://doi.org/10.14710/jitaa.41.1.
Tiven, N. C. 2017. Minimization of unsaturated fatty acid hydrogenation in rumen with keffir lime (Citrus hystrix) leaves. Bulletin Anim. Sci.. 41: 265-270. https://doi.org/10.21059/buletinpeternak.v41i3.17787
Tran, L. V., B. A. Malla, S. Kumar, & A. K. Tyagi. 2017. Polyunsaturated fatty acids in male ruminant reproduction. A review. Asian-Australas. J. Anim. Sci. 30: 622-637. https://doi.org/10.5713/ajas.15.1034
Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39: 971. https://doi.org/10.1021/ac60252a045
Yildiz, Y., M. A. Alfeen, & B. Yildiz. 2019. Determination of iodine value in triisocetyl citrate (Citmol-316) by United Satates Pharmacopeia Hanus Method. IJCPS 72: 38-41.
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.