Exploring Soil Biota and Chemical Dynamics in Palm Oil Cultivation: Insights from Cikabayan, Bogor
Abstract
Soil biological properties sometimes escape attention from environmental studies, especially regarding land use change. Several studies on diversity have been conducted in palm oil. However, most of the studies only focus on certain genera or order and have not yet depicted the micro-ecosystem in the soil. This study aims to analyze the interaction between soil biological properties and soil chemical properties through a correlation study using Randomized Block Design (RBD) to simplify the system in the micro-ecosystem. The result showed that most soil microbe parameters have complex and different interactions with soil chemical properties. Soil biological properties, such as the total microbes (TM) and Azotobacter (Az), significantly correlated toward phosphate and potassium, respectively. Furthermore, mesofauna and macrofauna have a negative and weak correlation with pH and a negative and moderate correlation towards Phosphate (P) content in the soil. This negative and moderate correlation strength happened due to increased soil acidity, leading to a higher chance of H2PO4- interacting with metal ions, resulting in a high risk of toxicity. Soil chemical properties have complex interactions with soil biological properties, and each will affect the others to balance the chemical cycling in the soil. Thus, this study showed the importance of preserving the natural balance of cultivated areas, in this case, palm oil plantations, so that the well-preserved ecosystem will give its benefits.
References
2. Jouquet, P.; Dauber, J.; Lagerlöf, J.; Lavelle, P.; Lepage, M. Soil Invertebrates as Ecosystem Engineers: Intended and Accidental Effects on Soil and Feedback Loops. Applied Soil Ecology 2006, 32, 153–164.
3. Wichern, J.; Wichern, F.; Joergensen, R.G. Impact of Salinity on Soil Microbial Communities and the Decomposition of Maize in Acidic Soils. Geoderma 2006, 137, 100–108, doi:10.1016/j.geoderma.2006.08.001.
4. Dai, Z.; Wang, Y.; Muhammad, N.; Yu, X.; Xiao, K.; Meng, J.; Liu, X.; Xu, J.; Brookes, P.C. The Effects and Mechanisms of Soil Acidity Changes, Following Incorporation of Biochars in Three Soils Differing in Initial PH. Soil Science Society of America Journal 2014, 78, 1606–1614, doi:10.2136/sssaj2013.08.0340.
5. Badan Pusat Statistik, [BPS] Statistik Kelapa Sawit Indonesia 2021; BPS-Statistics Indonesia: Indonesia, 2022; Vol. 1;.
6. Widrializa, W.; Widyastuti, R.; Andreas Santosa, D.; Djajakirana, G. The Diversity and Abundance of Springtail (Collembola) on Forests and Smallholder in Jambi. J Trop Soils 2015, 20, 173–180, doi:10.5400/jts.2015.20.3.173.
7. Putri, K.; Santi, R.; Aini, S.N. Keanekaragaman Collembola Dan Serangga Permukaan Tanah Di Berbagai Umur Perkebunan Kelapa Sawit (Elaeis Guineensis Jacq.). Jurnal Ilmu Tanah dan Lingkungan 2019, 21, 36–41, doi:10.29244/jitl.21.1.36-41.
8. Asih, U.S.; Yaherwandi, Y.; Efendi, S. Keanekaragaman Laba-Laba Pada Perkebunan Kelapa Sawit Yang Berbatasan Dengan Hutan. J Entomol Indones 2021, 18, 115–126, doi:10.5994/jei.18.2.115.
9. Stevik, T.K.; Aa, K.; Ausland, G.; Hanssen, J.F. Retention and Removal of Pathogenic Bacteria in Wastewater Percolating through Porous Media: A Review. Water Res 2004, 38, 1355–1367.
10. Food and Agriculture Organization [FAO] Standard Operating Procedure for Soil PH Determination; Food and Agriculture Organization of United Nations: Rome, 2021;
11. Gee, A.; Deitz, V.R. Determination of Phosphate by Differential Spectrophotometry. Anal. Chem. 1953, 25, 1320–1324.
12. Heinen Brown, J.; Gomez, M.J.; Benzo, Z.; Vaz, J.E. Application of the Response Surface Methodology for Potassium Determination in Soils by AAS Using the Slurry Technique. Chemometrics and Intelligent Laboratory Systems 1996, 35, 239–247.
13. Bierer, A.M.; Leytem, A.B.; Rogers, C.W.; Dungan, R.S. Evaluation of a Microplate Spectrophotometer for Soil Organic Carbon Determination in South-Central Idaho. Soil Science Society of America Journal 2021, 85, 438–451, doi:10.1002/saj2.20165.
14. Ekamaida Counting Total Bacteria in Land Organic Waste Household and Land Inorganic with Total Plate Count Method (TPC). Agrisamudra 2017, 4, 87–91.
15. Ottow, J.C.G. Rose Bengal as a Selective Aid in the Isolation of Fungi and Actinomycetes from Natural Sources. Mycologia 1972, 64, 304–315, doi:10.1080/00275514.1972.12019265.
16. Widiyawati, I.; Junaedi, A.; Rahayu Widyastuti, dan The Role of Nitrogen-Fixing Bacteria to Reduce the Rate of Inorganic Nitrogen Fertilizer on Lowland Ricefield. J. Agron. Indonesia 2014, 42, 96–102.
17. Nautiyal, C.S. An Efficient Microbiological Growth Medium for Screening Phosphate Solubilizing Microorganisms. FEMS Microbiol Lett 1999, 170, 265–270.
18. Nurkanto, A. Identification of Soil Actinomycetes in Bukit Bangkirai Fire Forest East Kalimantan and Its Potention as Cellulolitic and Phosphate Solubilizing. Biodiversitas 2007, 8, 314–319, doi:10.13057/biodiv/d080414.
19. Kramer, C.; Gleixner, G. Soil Organic Matter in Soil Depth Profiles: Distinct Carbon Preferences of Microbial Groups during Carbon Transformation. Soil Biol Biochem 2008, 40, 425–433, doi:10.1016/j.soilbio.2007.09.016.
20. Meyer, E. Endogeic Macrofauna. In Methods in Soil Biology; Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1996; pp. 346–354 ISBN 978-3-642-60966-4.
21. Obilor, E.I.; Amadi, E.C. Test for Significance of Pearson’s Correlation Coefficient (r). International Journal of Innovative Mathematics, Statistics & Energy Policies 2018, 6, 11–23.
22. de Winter, J.; Soling, S.; Potter, J. Comparing the Pearson and Spearman Correlation Coefficients across Distributions and Sample Sizes: A Tutorial Using Simulations and Empirical Data. Psychol Methods 2016, 21, 273–290, doi:10.1037/met0000079.supp.
23. Maguran, A.E. Measuring Biology Diversity; Blackwell Science Ltd.: Oxford, 2005; ISBN 978-0-632-05633-0.
24. Tiemann, T.T.; Donough, C.R.; Lim, Y.L.; Härdter, R.; Norton, R.; Tao, H.H.; Jaramillo, R.; Satyanarayana, T.; Zingore, S.; Oberthür, T. Feeding the Palm: A Review of Oil Palm Nutrition. Advances in Agronomy 2018, 152, 149–243, doi:10.1016/bs.agron.2018.07.001.
25. Wei, H.; Liu, Y.; Xiang, H.; Zhang, J.; Li, S.; Yang, J. Soil Ph Responses to Simulated Acid Rain Leaching in Three Agricultural Soils. Sustainability (Switzerland) 2020, 12, 1–12, doi:10.3390/su12010280.
26. Li, Y.; Chapman, S.J.; Nicol, G.W.; Yao, H. Nitrification and Nitrifiers in Acidic Soils. Soil Biol Biochem 2018, 116, 290–301.
27. Hernwall, J.B. The Fixation of Phosphorus by Soils. Advances in Agronomy 1957, 1, 95–111, doi:10.1016/S0065-2113(08)60110-8.
28. Koutika, L.S.; Epron, D.; Bouillet, J.P.; Mareschal, L. Changes in N and C Concentrations, Soil Acidity and P Availability in Tropical Mixed Acacia and Eucalypt Plantations on a Nutrient-Poor Sandy Soil. Plant Soil 2014, 379, 205–216, doi:10.1007/s11104-014-2047-3.
29. Johan, P.D.; Ahmed, O.H.; Omar, L.; Hasbullah, N.A. Phosphorus Transformation in Soils Following Co-Application of Charcoal and Wood Ash. Agronomy 2021, 11, doi:10.3390/agronomy11102010.
30. Carrillo, Y.; Ball, B.A.; Bradford, M.A.; Jordan, C.F.; Molina, M. Soil Fauna Alter the Effects of Litter Composition on Nitrogen Cycling in a Mineral Soil. Soil Biol Biochem 2011, 43, 1440–1449, doi:10.1016/j.soilbio.2011.03.011.
31. Sabatini, M.A.; Ventura, M.; Innocenti, G. Do Collembola Affect the Competitive Relationships among Soil-Borne Plant Pathogenic Fungi? Pedobiologia (Jena) 2004, 48, 603–608, doi:10.1016/j.pedobi.2004.07.003.
32. Sanders, D.; van Veen, F.J.F. Ecosystem Engineering and Predation: The Multi-Trophic Impact of Two Ant Species. Journal of Animal Ecology 2011, 80, 569–576, doi:10.1111/j.1365-2656.2010.01796.x.
33. de Vries, F.T.; Bloem, J.; van Eekeren, N.; Brusaard, L.; Hoffland, E. Fungal Biomass in Pastures Increases with Age and Reduced N Input. Soil Biol Biochem 2007, 39, 1620–1630, doi:10.1016/j.soilbio.2007.01.013.
34. Ren, C.; Chen, J.; Lu, X.; Doughty, R.; Zhao, F.; Zhong, Z.; Han, X.; Yang, G.; Feng, Y.; Ren, G. Responses of Soil Total Microbial Biomass and Community Compositions to Rainfall Reductions. Soil Biol Biochem 2018, 116, 4–10.
35. Di Lonardo, D.; van der Wal, A.; Harkes, P.; de Boer, W. Effect of Nitrogen on Fungal Growth Efficiency. Plant Biosyst 2020, 154, 433–437, doi:10.1080/11263504.2020.1779849.
36. Allen, E.R. Some Conditions Affecting the Growth and Activities of Azotobacter Chroococcum. Source: Annals of the Missouri Botanical Garden 1919, 6, 1–44, doi:https://doi.org/10.2307/2990094.
37. Aasfar, A.; Bargaz, A.; Yaakoubi, K.; Hilali, A.; Bennis, I.; Zeroual, Y.; Meftah Kadmiri, I. Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Front Microbiol 2021, 12, 1–19.
38. Aciego Pietri, J.C.; Brookes, P.C. Relationships between Soil PH and Microbial Properties in a UK Arable Soil. Soil Biol Biochem 2008, 40, 1856–1861, doi:10.1016/j.soilbio.2008.03.020.
39. Miransari, M. Soil Microbes and the Availability of Soil Nutrients. Acta Physiol Plant 2013, 35, 3075–3084.
40. Penn, C.J.; Camberato, J.J. A Critical Review on Soil Chemical Processes That Control How Soil Ph Affects Phosphorus Availability to Plants. Agriculture (Switzerland) 2019, 9, 1–18, doi:10.3390/agriculture9060120.
41. Geissen, V.; Gehrmann, J.; Genssler, L. Relationships between Soil Properties and Feeding Activity of Soil Fauna in Acid Forest Soils. Journal of Plant Nutrition and Soil Science 2007, 170, 632–639, doi:10.1002/jpln.200625050.
42. El-Banhawu, E.M. Biology and Feeding Behaviour of the Predatory Mite, Amblyseius Brazilli [Mesostigmata: Phytoseiidae](I). Entomophaga 1975, 20, 353–360.
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Media Konservasi is an open access journal, meaning that all content is freely available without charge to the user or their institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without needing to request prior permission from the publisher or the author.
All articles published by Media Konservasi are licensed under the Creative Commons Attribution 4.0 International License. This allows for unrestricted use, distribution, and reproduction in any medium, provided proper credit is given to the original authors.
Authors submitting manuscripts should understand and agree that the copyright of published manuscripts is retained by the authors. Copyright encompasses the exclusive rights of authors to reproduce, distribute, and sell any part of the journal articles in all forms and media. Reproduction of any part of this journal, its storage in databases, and its transmission by any form or media is allowed without written permission from Media Konservasi.