HEIGHT, DIAMETER AND TREE CANOPY COVER ESTIMATION BASED ON UNMANNED AERIAL VEHICLE (UAV) IMAGERY WITH VARIOUS ACQUISITION HEIGHT
Abstract
The forest inventory technique by applying remote sensing technology has become a new breakthrough in technological developments in forest inventory activities. Unmanned Aerial Vehicle (UAV) imagery with camera sensor is one of the inventory tools that produce data with high spatial resolution. The level of spatial resolution of the image is strongly influenced by the flying height of the UAV for a certain camera’s focus. In addition, flight height also affects the acquisition time and accuracy of inventory results, although there is still little research on this matter. The study aims to (a)evaluate the effect of various flying heights on the accuracy of tree height measurements through UAV imagery for every stand age class, (b).estimate the trees diameter and canopy cover for every stand age class. Stand height was estimated using Digital Surface Models (DSM), Digital Terrain Models (DTM) and Orthophoto. DSM and DTM were built by converting orthophoto to pointclouds using the PIX4Dmapper based on Structure From Motion (SFM) on the photogrammetric method to reconstruct topography automatically. Meanwhile, the tree cover canopy was estimated using the All Return Canopy Index (ARCI) formula. The results show that the flight height of 100 meters produces a stronger correlation than the flying height of 80 meters and 120 meters in estimating tree height, based on the high coefficient of determination (R2) and the low root mean square error (RMSE) value. In addition, tree canopy estimation analysis using ARCI has a maximum difference of 9.8% with orthophoto visual delineation.
Key words: canopy height model (CHM), digital surface models (DSM), digital terrain models (DTM), forest inventory, UAV image
Authors
Media Konservasi is an open access journal, meaning that all content is freely available without charge to the user or their institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without needing to request prior permission from the publisher or the author.
All articles published by Media Konservasi are licensed under the Creative Commons Attribution 4.0 International License. This allows for unrestricted use, distribution, and reproduction in any medium, provided proper credit is given to the original authors.
Authors submitting manuscripts should understand and agree that the copyright of published manuscripts is retained by the authors. Copyright encompasses the exclusive rights of authors to reproduce, distribute, and sell any part of the journal articles in all forms and media. Reproduction of any part of this journal, its storage in databases, and its transmission by any form or media is allowed without written permission from Media Konservasi.