MORPHOLOGICAL VARIATIONS IN MUD CLAM Polymesoda erosa (Lightfoot) USING FLUCTUATING ASYMMETRY ANALYSIS IN LA UNION, CABADBARAN CITY, AGUSAN DEL NORTE, PHILIPPINES

Noel Sastrillas, Charisse T. Hebanada, Rexie P. Magdugo

Abstract

A geometric morphometric study was conducted on the population of Polymesoda erosa in La Union, Cabadbaran City, to investigate the morphological variations using fluctuating asymmetry (FA) analysis. FA acts as a reliable indicator of ecological stress and developmental instability since it detects genetic or environmental changes that an organism experiences. A total of ninety (90) individual mud clams were randomly collected and analyze. Water and soil samples were also collected to gather data on the degree of body variations and the impact of external factors on P. erosa. The result of the analysis using the SAGE software revealed a highly significant fluctuating asymmetry (P 0.0001). Significant variations in individuals, sides, and the interaction between individuals and sides symmetry were mostly responsible for the substantial variances seen in mud clam species. Particularly, landmarks 10 (dorsal margin maxima) and 13 (anterior margin maxima) exhibited notable variations. For the water quality results, the mud clam's internal valve was likely to be relatively unaffected or minimally impacted, but the level of nickel was high. In conclusion, the fluctuating asymmetry of P. erosa can be attributed to a stressed environment. Unfavorable environmental factors cause an organism's morphology to change, affecting its symmetry.

References

Argente, F., & A. Ilano, 2021. Population dynamics and aquaculture potential of the mud clam, Geloina expansa (Mousson, 1849) (Bivalvia: Cyrenidae) in loay-loboc river, Bohol. J. Sustain Sci Manag, 16(4): 43-55. http://doi.org/10.46754/jssm.2021.04.004
Bernales, G.G., C.M. Calo, C.M. Dumago, A. Tibe, M. Barbon, & D.M. Altar, 2022. Analysis of heavy metal (Hg, Pb, Ni) content in Marsh Clam, Polymesoda expansa collected from Butuan Bay, Philippines. Int J. of Biological, Physical and Chemical Studies, 4(1): 14-23. https://doi.org/10.32996/ijbpcs.2022.4.1.3
Borlongan, I. A., Nishihara, G. N., Shimada, S. and Terada, R. 2017. Photosynthetic performance of the red alga Solieria pacifica (Solieriaceae) from two different depths in the sublittoral waters of Kagoshima, Japan. Journal of Applied Phycology (in press)
Chiaravalle, A.E. 2013. Assessment of heavy metals in bivalves molluscs of Apulian region: A 3-years control activity of a EU laboratory. E3S Web of Conferences, 1, 11006. https://doi.org/10.1051/e3sconf/20130111006
Clarke, G.M., 1993. Fluctuating asymmetry of invertebrate population as a biological indicator of environmental quality. Environmental Pollution, 82: 207-211. https://doi.org/10.1016/0269-7491(93)90119-9
Ducos, M.B., & S.R.M. Tabugo, 2015. Fluctuating asymmetry as bioindicator of stress and developmental instability in Gafrarium tumidum (Ribbed venus clam) from coastal areas of Iligan Bay, Mindanao, Philippines. AACL Bioflux. 8(3):292-300.
Eriksson, S.I., Elmquist, H., Stern, S., & Nybrant, T. 2005. Environmental systems analysis of pig production-the impact of feed choice (12 pp). The International Journal of Life Cycle Assessment, 10, 143-154.
Jumawan, J., O. Samantha, A. Abastillas, M. Dicdican, M. Cabag, E. Gamolo, J. Velasco, C. Cabuga, Y. Mordeno, E. Requieron, M. Torres, 2016. Fluctuating asymmetry in the body shapes of goby fish Glossogobius giuris from Agusan River, Butuan City, Agusan del Norte, Philippines. https://www.researchgate.net/publication/296062028
Jumawan, J.H., Requieron, E.A., Torres, M. A., Velasco, J. P., Cabuga Jr, C. C., Joseph, C.C., ... & Jumawan, J.C. 2016. Investigating the fluctuating asymmetry in the metric characteristics of tilapia Oreochromis niloticus sampled from Cabadbaran River, Cabadbaran City, Agusan del Norte, Philippines. Aquaculture, Aquarium, Conservation & Legislation, 9(1), 113-121.
Kim, W. S., H. T. Huh, S. Huh, & T. W. Lee, 2001. Effects of salinity on endogenous rhythm of the Manila clam, Ruditapes philippinarum (Bivalvia: Veneridae). J of Marine Biology, 138(1): 157-162. https://doi.org/10.1007/s002270000430
Klingenberg C., M. Barluenga, A. Meyer, 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Intl J. of Organic Evolution, 56: 1909–1920. https://https://doi.org/10.1111/j.0014-3820.2002.tb00117.x
Klingenberg, C. 2015. Analyzing Fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. MDPI, 7(2): 843-934. https://doi.org/10.3390/sym7020843
Le, C., Zha, Y., Li, Y., Sun, D., Lu, H., & Yin, B. 2010. Eutrophication of lake waters in China: cost, causes, and control. Environmental management, 45, 662-668.
Leary, R.F., & Allendorf, F.W. 1989. Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends in Ecology & Evolution, 4(7): 214-217.
Lens, L., S. Van Dongen, S. Kark, E. Matthysen, 2002. Fluctuating asymmetry as an indicator of fitness: can we bridge the gap between studies. Biological Reviews of the Cambridge Philosophical Society. 77(1): 27-38. https://doi.org/10.1017/S1464793101005796
Leibvitz, L. 2009. Retrograde diseases of fouled cultured juvenile hard clams (Mercenaria mercenaria). J. of the World Mariculture Society, 16(1-4): 387-397. https://doi.org/10.1111/j.1749-7345.1985.tb00220.x
Leung, B., & Forbes, M.R. 1997. Modelling fluctuating asymmetry in relation to stress and fitness. Oikos, 397-405.
Liu, W., & Qiu, R. 2007. Water eutrophication in China and the combating strategies. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 82(9): 781-786.
Ludwig, W., 1932. Das-rechts-links problem im Tierreich und beim Menschen. Monographien aus dem Gesamtgebiet der Physiologie der Pflanzen und der Tiere, Volume 27, Springer-Verlag, Berlin.
Maoxiao, P., Y. Bo, L. Xiaojun, N. Donghong, L. Tianyi, D. Zhiguo, & L. Jiale, 2018. Effects of alkalinity and pH on survival, growth, and enzyme activities in juveniles of the Razor clam, Sinonovacula constricta. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.00552
Moller, A., & J. Swaddle, 1997. Asymmetry, Developmental Stability, and Evolution; Oxford University Press: Oxford. 152-158pp.
Natividad, E., A. Dalundong, J. Ecot, J. Jumawan, M. Torres, & E. ARequieron, 2015. Fluctuating asymmetry in the body shapes of Gobies Glossogobius celebius (Valenciennes, 1837) from Lake Sebu, South Cotabato, Philippines. AACL Intl J. of the Bioflux Society, 8(3): 323-331. http://www.bioflux.com.ro/aacl
Palmer, A. 1994. Fluctuating asymmetry analyses: A primer in developmental instability: its origins and implications, Markow, T.A., Ed., Kluwer: Durdrecht, The Netherlands, 335-364pp.
Palmer, A., & C. Strobeck, 1986. Fluctuating asymmetry: Measurement, analysis, patterns. Annu. Rev. Ecol. Syst., 17: 391-421. https://doi.org/10.1146/annurev.es.17.110186.002135
Palmer, A., & C. Strobeck, C. 2003. Fluctuating asymmetry analyses revisited. In Developmental Instability: Causes and Consequences; Polak, M., Ed,; Oxford University Press; New York, NY, USA, 279-319pp.
Parsons, P. 1990. Fluctuating asymmetry: An epigenetic measure of stress. Biol Rev Camb Philos Soc., 65: 131-145. https://doi.org/10.1111/j.1469-185x.1990.tb01186.x
Petersen, S.O., Sommer, S.G., Béline, F., Burton, C., Dach, J., Dourmad, J.Y., ... & Mihelic, R. 2007. Recycling of livestock manure in a whole-farm perspective. Livestock science, 112(3): 180-191.
Polak, M., & Taylor, P.W. 2007. A primary role of developmental instability in sexual selection. Proceedings of the Royal Society B: Biological Sciences, 274(1629), 3133-3140.
Polly, P.D. 2012. Geometric Morphometrics for Mathematica (Ver. 9.0).
Rathinam, B., D. Kadam, A. Iburahim, & G. Tripathi, 2022. Contaminants of emerging concern and their impact on aquatic environment. Research trends in fisheries and aquatic sciences, 14: 19-36. https://www.researchgate.net/publication/361435197
Graham J., S. Raz, H. Hel-or, & E. Nevo, 2010. Fluctuating asymmetry: Methods, theory, and applications. MDPI, 2(2): 466-540. https://doi.org/10.3390/sym2020466
Roegner, G.C., & Mann, R.L. (1991). Hard clam Mercenaria mercenaria.
Sandstrom, M.W., & F.D. Wilde, 2014. Chapter A5. Section 2.2b. syringe-filter procedure for processing samples for analysis of organic compounds by Dai lc-ms/Ms. Techniques and Methods. USGS, 3(1): 10. https://doi.org/10.3133/tm5.2.2.b
Sommer, C., 1996. Ecotoxicology and developmental stability as an in situ monitor of adaptation. JSTOR, 25(5): 374-376. https://www.jstor.org/stable/4314496
Thain, J., Fernández, B., and Martínez–Gómez, C. 2019. Biological effects of contaminants: Stress on stress (SoS) response in mussels. ICES Techniques in Marine Environmental Sciences. No. 59. 11 pp. http://doi.org/10.17895/ices.pub.470
Tomkins J., & J. Kotiaho, 2001. Fluctuating asymmetry. Encyclopedia of Life Sciences(2001) Mcmillan Publishers Ltd, Nature Publishing Group/ww.els.net
Velichović, M., 2004. Chromosomal aberrancy and the level of fluctuating asymmetry in black-striped mouse (Apodemus agrarius): effects of disturbed environment. Hereditas, 140(2): 112-122. https://doi.org/10.1111/j.1601-5223.2004.01827.x
Yin, X., P. Chen, H. Chen, W. Jin, & X. Yan, 2017. Physiological performance of the intertidal Manila clam (Ruditapes philippinarum) to long-term daily rhythms of air exposure. Scientific Reports, 7(1). https://doi.org/10.1038/srep41648

Authors

Noel Sastrillas
noel.sastrillas@deped.gov.ph (Primary Contact)
Charisse T. Hebanada
Rexie P. Magdugo
SastrillasN., HebanadaC. T., & MagdugoR. P. (2024). MORPHOLOGICAL VARIATIONS IN MUD CLAM Polymesoda erosa (Lightfoot) USING FLUCTUATING ASYMMETRY ANALYSIS IN LA UNION, CABADBARAN CITY, AGUSAN DEL NORTE, PHILIPPINES. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 16(2), 179-191. https://doi.org/10.29244/jitkt.v16i2.53289

Article Details