DNA BARCODING, MORPHOLOGICAL IDENTIFICATION AND POPULATION DENSITY OF GENUS TRIDACNA IN NORTH MALUKU WATER

  • Namira Hadadi Institut Pertanian Bogor
  • Hawis Madduppa
  • Irma Shita Azaraly
  • Nurlita Putri Anggraini
Keywords: evaluation of density, evaluation of size, overexploitation, species decreased

Abstract

Tridacna (kima) is a giant bivalve that is important to ecology. Attractive sizes and colours are the main attraction of overexploitation. Protection must occur, such as density measurement, size variations, and species identification based on morphology and DNA barcodes. This study aimed to identify clams using the DNA barcode method and to evaluate their population size and density in North Maluku waters. The research method uses DNA barcodes, morphological identification of mantle colour and shell size variations, and measurements of the density of clams found in North Maluku waters. The results were helpful based on DNA barcoding. They helped detect the morphology of the same results. Namely, three types of clams, Tridacna crocea, Tridacna squamosa, and Tridacna maxima, were detected. Differences in the shell's size and shape and the mantle's colour strengthen the three types as distinct species. In addition, the clade shape of the phylogenetic tree between the samples and GenBank data from the same clade. The condition of clam density in these waters showed the same results as other locations, namely less than 1/m2. A value density of < 1 m2 may suggest that the species is declining or lead to over-exploitation. Thus, this research data can be used as a reference for assessing chemical conservation activities.

Downloads

Download data is not yet available.

References

Albert, D.D.A, V. Bujeng, & S. Chia. 2017. Traditional shell artefact production in Northern Sabah. Sabah Soc J. 33: 45–55. https://www.academia.edu/49221593/Traditional_shell_artefact_production_in_Northern_Sabah

Allo, M.K., H. Setiawan, I.N. Dewi, A.R. Bisjoe, Nurhayati, & M. Qiptiyah. 2010. Studi Etnoekologi Kima Lubang (Tridacna Crocea) dan Ikan Malaja (Sigamus Canaliculatus) di Kawasan Taman Nasional Taka Bonerate. Makassar (ID): Balai Penelitian Kehutanan Makassar.

Beger, M., K.A. Selkoe, E. Treml, P.H. Barber, S. von der Heyden, E.D. Crandall, R.J. Toonen & C. Riginos. 2014. Evolving coral reef conservation with genetic information. Bulletin of Marine Science. 90: 159–185. https://digitalcommons.csumb.edu/cgi/viewcontent.cgi?article=1009&context=sns_fac

bin Othman, A. S., G. H. S. Goh & P. A. Todd, 2010. The distribution and status of giant clams (family Tridacnidae)— A short review. Raffles Bulletin of Zoology, 58: 103–111. https://scholarbank.nus.edu.sg/handle/10635/102556

Calumpong, H. P. 1992. The Giant Clam: An Ocean Culture Manual. Australian Center for International Agricultural Research (ACIAR). Canberra. 68 pp.

Carpenter, K.E., P.H. Barber, E.D. Crandall, M.C.A. Ablan-Lagman, Ambariyanto, G.N. Mahardika, B.M. Manjaji-Matsumoto, M.A. Juinio-Meñez, D.S. Mudjekeewis, C.J. Starger & A.H.A. Toha. 2011. Comparative phylogeography of the Coral Triangle and implications for marine management. Journal of Marine Biology.vol. 2011. Article ID 396982. 14 p. https://doi.org/10.1155/2011/396982

Chambers, C.N. 2007. Pasua (Tridacna maxima) size and abundance in Tongareva Lagoon, Cook Islands. SPC Trochus Information Bulletin. 13: 7-12. https://coastfish.spc.int/News/Trochus/Trochus13/Trochus13_07_Chambers.pdf

Claus, C.A. 2017. Beyond Merroir: The Okinawan Taste for Clams. Gastronomica. 17(3): 49–57.

Coffroth, M.A., & S.R. Santos. 2005. Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156: 19-34. https://doi.org/10.1016/j.protis.2005.02.004

Dayrat, B. 2005. Towards integrative taxonomy. Biol. J. Linn. Soc. 85(3): 407–415. https://doi.org/10.1111/j.1095-8312.2005.00503.x

DeBoer, T.S., Naguit, M.R.A., M.V. Erdmann, M.C.A. Ablan-Lagman, Ambariyanto, K.E. Carpenter, A.H.A. Toha, & P.H. Barber. 2014. Concordance between phylogeographic and biogeographic boundaries in the Coral Triangle: conservation implications based on comparative analyses of multiple giant clam species. Bulletin of Marine Science. 90(1): 277–300. https://doi.org/10.5343/bms.2013.1003

English S., C. Wilkinson, & V. Baker.1997. Survey Manual for Tropical Marine Resources. 2nd Edition. Australian Institute of Marine Science. 383p.

Fitt, W.K. 1991. Mariculture of Giant Clam. Di dalam: Menzel W. Editor. Estuarine and Marine Bivalve Mollusca Culture. Boston (US): CRC Press. Inc Boca Raton. 284-293p.

Findra, M.N., I. Setyobudiandi, N.A. Butet & D.D. Solihin. 2020. Status populasi sumber daya kima (Tridacnidae) di Perairan Taman Nasional Wakatobi. Proc. Seminar Nasional Kelautan dan Perikanan III (Kendari: UHO EduPress) 126-32.

Findra, M.N., I. Setyobudiandi, N.A. Butet, & D.D. Solihin. 2017. Genetic profile assessment of giant clam genus Tridacna as a basis for resource management in Wakatobi National Park waters. Ilmu Kelautan, 22(2): 67-74. https://doi.org/10.14710/ik.ijms.22.2.67-74

Frézal, L., & R. Leblois. 2008. Four years of DNA barcoding: current advances and prospects. Infection, Genetics and Evolution, 8(5): 727-736. https://doi.org/10.1016/j.meegid.2008.05.005

Guo, X., X. Dai, D. Chen, T.J. Papenfuss, N.B. Ananjeva, D.A. Melnikov, & Y. Wang. 2011. Phylogeny and divergence times of some racerunner lizards (Lacertidae: Eremias) inferred from mitochondrial 16S rRNA gene segments. Molecular Phylogenetics and Evolution. 61(2), 400-412. https://doi.org/10.1016/j.ympev.2011.06.022

Harahap, S.A., Y. Yanuar, & Y. Ilham. 2018. Diversity and abundance of giant clams in Anambas Islands, Indonesia. E3S Web of Conferences 47: 1-9. https://doi.org/10.1051/e3sconf/20184703005

Hart, A.M., J.D. Bell, & T.P. Foyle. 1998. Growth and survival of the giant clams, Tridacna derasa, T. maxima and T. crocea, at village farms in the Solomon Islands. Aquaculture. 165(3-4): 203–220. https://doi.org/10.1016/S0044-8486(98)00255-5

Hebert, P.D.N., S. Ratnasingham, & J.R. deWaard. 2003. Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences; 270: S96-S99. https://doi.org/10.1098%2Frsbl.2003.0025

Hernawan, U.E., 2012. Taxonomy of Indonesian giant clams (Cardiidae, Tridacninae). Biodiversitas Journal of Biological Diversity. 13(3): 118–123. https://doi.org/10.13057/biodiv/d130303

Hui, M., W.E. Kraemer, C. Seidel, A. Nuryanto, A. Joshi, & M. Kochzius. 2016. Comparative genetic population structure of three endangered giant clams (Cardiidae: Tridacna species) throughout the Indo-West Pacific: implications for divergence, connectivity and conservation. Journal of Molluscan Studies. 82(3): 403–414. https://doi.org/10.1093/mollus/eyw001

Joubert, C., C. Linard, G. Le Moullac, C. Soyez, D. Saulnier, V. Teaniniuraitemoana, C.L. Ky, & Y. Gueguen. 2014. Temperature and food influence shell growth and mantle gene expression of shell matrix proteins in the pearl oyster Pinctada margaritifera. PloS one. 9(8), p.e103944. https://doi.org/10.1371/journal.pone.0103944

Kinch, J. & A. Teitelbaum. 2009. Proceedings of the Regional Workshop on the Management of Sustainable Fisheries for Giant Clams (Tridacnidae) and CITES Capacity Building. Secretariat of the Pacific Community, Noumea, New Caledonia. 51 pp.

Kreb, C.J. 1989. Ecology Methodology. Hamper & Row Inc. Publisher. New York.

Kubo, H. & K. Iwai. 2007. On two sympatric species within Tridacna ‘‘maxima’’. Annu. Rep. Okinawa Fish. Ocean Res. Ctr. 68:205–210.

Kumayanjati, B. 2015. Kima Biota Eksotik perairan Indo-pasifik. Oseana (XI) (4): 11-21.

Kusnadi, A., D. Kurnianto, H. Madduppa, N.P. Zamani, P.S. Ibrahim, U.E. Hernawan, R.T. Utami & T. Triandiza. 2022. Genetic diversity and population structure of the boring giant clam (Tridacna crocea) in Kei Islands, Maluku, Indonesia. Biodiversitas Journal of Biological Diversity. 23(3): 1273–1282. https://doi.org/10.13057/biodiv/d230311

Larson, C. 2016. Shell trade pushes giant clams to the brink. Science, 351: 323-324. https://doi.org/10.1126/science.351.6271.323

Lee, L.K., M.L. Neo, Z.F. Lim, K.S. Hii, H.C. Lim, A.A. Chan, H. Gu, P.T. Lim, & C.P. Leaw. 2022. Population status and genetic diversity of two endangered giant clams (Tridacna squamosa and Tridacna maxima) on the fringing reefs of Perhentian Islands, Malaysia. Aquatic Conservation: Marine and Freshwater Ecosystems. 32(6): 1005-1021. https://doi.org/10.1002/aqc.3807

Lizano, A.M.D & M.D. Santos. 2014. Updates on the status of giant clams Tridacna spp. and Hippopus hippopus in the Philippines using mitochondrial CO1 and 16S rRNA genes. Philipp Sci Lett, 7(1), pp.187-200.

Lucas, J.S. 2014. Giant clams. Curr Biol 24 (5): 183-184. https://doi.org/10.1016/j.cub.2013.11.062

Lyons, Y., D. Cheong, M.L. Neo, & H.F. Wong. 2018. Managing giant clams in the South China sea. Intl J Mar Coastal Law. 33: 1-28. https://doi.org/10.1163/15718085-13301048

Mamat, N.S., Y.U.S.R.I. Yusuf, S.A. Md nor, S. Md Sheriff, M.N. Ismail, & N. Mohd Husin. 2021. Dna barcoding of endangered giant clams in islands off the east coast of peninsular Malaysia. Journal of Sustainability Science and Management. 16(5): 35-47. https://doi.org/10.46754/jssm.2021.07.003

Mies, M., P. Dor, A.Z. Güth, & P.Y.G. Sumida. 2017. Production in giant clam aquaculture: Trends and challenges. Rev Fish Sci Aquac. 25: 286-296. https://doi.org/10.1080/23308249.2017.1285864

Mohammed, T.A.A., M.H. Mohamed, R.M. Zamzamy, & M.A.M. Mahmoud. 2019. Growth rates of the giant clam Tridacna maxima (Röding, 1798) reared in cages in the Egyptian Red Sea. The Egyptian Journal of Aquatic Research, 45(1): 67-73. https://doi.org/10.1016/j.ejar.2019.02.003

Neo, M.L. & P.A. Todd. 2013. Conservation status reassessment of giant clams (Mollusca: Bivalvia: Tridacninae) in Singapore. Nature in Singapore. 6(3): 125-133.

Neo, M.L, & K.S. Loh. 2014. Giant clam shells ‘graveyard’ at Semakau Landfill. Singapore Biodiversity Records. 248-249.

Neo, M.L., W. Eckman, K. Vicentuan, S.L.M. Teo, & P.A. Todd. 2014. The ecological significance of giant clams in coral reef ecosystems. Biological Conservation, 181: 111–123. https://doi.org/10.1016/j.biocon.2014.11.004

Neo, M.L., W. Eckman, K. Vicentuan, S.L.M. Teo, & P.A. Todd. 2015. The ecological significance of giant clams in coral reef ecosystems. Biol. Conserv., 181: 111–123. https://doi.org/10.1016/j.biocon.2014.11.004

Neo, M.L., C.C.C. Wabnitz, R.D. Braley, G.A. Heslinga, C. Fauvelot, S. Van Wynsberge, S. Andréfouët, C. Waters, AS-H. Tan, E.D. Gomez, M.J. Costello, & P.A. Todd. 2017. Giant clams (Bivalvia: Cardiidae: Tridacninae): A comprehensive update of species and their distribution, current threats and conservation status. Oceanogr Mar Biol Annu Rev 55: 87-388. https://doi.org/10.1201/b21944-5

Neo, M.L., K.K. Lim, S.Y. Yang, G.Y. Soong, G.D. Masucci, P. Biondi, H.B. Wee, H. Kise, J.D. Reimer. 2019. Status of giant clam resources around Okinawa-jima Island, Ryukyu Archipelago, Japan. Aquat Conserv. 29:1002–1011. https://doi.org/10.1002/aqc.3033

NMFS. 2018. Endangered and threatened wildlife; 90-day finding on a petition to list Chinook salmon in the Upper Klamath-Trinity Rivers Basin as Threatened or Endangered Under the Endangered Species Act. Fed Reg. 83: 8410-8414.

Ni, L., Q. Li, L. Kong, S. Huang, & L. Li 2012. DNA barcoding and phylogeny in the family Mactridae (Bivalvia: Heterodonta): Evidence for cryptic species. Biochemical Systematics and Ecology. 44: 164-172. https://doi.org/10.1016/j.bse.2012.05.008

Nijman V., D. Spaan, & K.A.I. Nekaris. 2015. Large scale trade in legally protected marine mollusc shells from Java and Bali, Indonesia. PLoS One 10 (12): e0140593. https://doi.org/10.1371/journal.pone.0140593

Nuryanto, A., D. Duryadi, D. Soedharma, & D. Blohm. 2007. Molecular phylogeny of giant clams based on mitochondrial DNA cytochrome c oxidase I gene. HAYATI Journal of Biosciences, 14(4): 62-166. https://doi.org/10.4308/hjb.14.4.162

Palumbi, S.R., D. Hillis, C. Moritz (Eds.). 1996. Molecular Systematics, Sinauer, Sunderland. pp. 205-247.

Patwardhan, A., S. Ray, & A. Roy. 2014. Molecular markers in phylogenetic studies-a review. Journal of Phylogenetics & Evolutionary Biology; 2(2): 1–9. https://doi.org/10.4172/2329-9002.1000131

Ramah, S., N. Taleb-Hossenkhan, P.A. Todd, M.L. Neo, & R. Bhagooli. 2019. Drastic decline in giant clams (Bivalvia: Tridacninae) around Mauritius Island, Western Indian Ocean: implications for conservation and management. Marine Biodiversity. 49: 815-823. https://doi.org/10.1007/s12526-018-0858-9

Richter, C., H. Roa-Quiaoit, C. Jantzen, M. Al-Zibdah, M. Kochzius. 2008.Collapse of a new living species of giant clam in the Red Sea. Current Biology, 18(17): 1349-1354. https://doi.org/10.1016/j.cub.2008.07.060

Rizkifar, M.A., Ihsan, Y.N., Hamdani, H., & Sunarto. 2019. Kepadatan dan preferensi habitat kima (Tridacnidae) di perairan Pulau Semak Daun Provinsi DKI Jakarta. Jurnal Perikanan dan Kelautan; X(1): 74-83. https://jurnal.unpad.ac.id/jpk/article/view/23046

Schneider, J.A. & D.Ó. Foighil, 1999. Phylogeny of giant clams (Cardiidae: Tridacninae) based on partial mitochondrial 16S rDNA gene sequences. Molecular Phylogenetics and Evolution, 13(1): 59-66. https://doi.org/10.1006/mpev.1999.0636

Soo, P. & P.A. Todd. 2014. The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae). Marine Biology. 161(12): 2699–2717. https://doi.org/10.1007/s00227-014-2545-0

Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar. 2013. MEGA 5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood. Evolutionary Distance. and Maximum Parsimony Methods. Mol Bio Evol. 28 (10): 731-2739. https://doi.org/10.1093%2Fmolbev%2Fmsr121

Tang, Y.C. 2005. The systematic status of Tridacna maxima (Bivalvia: Tridacnidae) based on morphological and molecular evidence. [Disertasi]. National Taiwan Ocean University. 114 pp.

Tisdell, C., Y.C. Shang, & P. Leung. 1994. Economics of commercial giant clam mariculture. Economics of commercial giant clam mariculture. 306pp.

Toonen, R.J., T. Nakayama, T. Ogawa, A. Rossiter, & J.C. Delbeek. 2012. Growth of cultured giant clams (Tridacna spp.) in low pH, high-nutrient seawater species - specific effects of substrate and supplemental feeding under acidification. J. Mar. Biol. Assoc., 92: 731–740. https://doi.org/10.1017/S0025315411000762

Triandiza, T., N.P. Zamani, H. Madduppa, U.E. Hernawan. 2019. Distribution and abundance of the giant clams (Cardiidae: Bivalvia) on Kei Islands, Maluku, Indonesia. Biodiversitas, 20: 884-892. https://doi.org/10.13057/biodiv/d200337

Vicentuan-Cabaitan K., M.L. Neo, W. Eckman, S.L.M. Teo, & P.A. Todd. 2014. Giant clam shells host a multitude of epibionts. Bull Mar Sci., 90 (3): 795-796. https://doi.org/10.5343/bms.2014.1010

Wabnitz, C., M. Taylor, E. Green & T. Razak. 2003. From Ocean to Aquarium. UNEP-WCMC, Cambridge, UK. 64 pp.

Waheed, Z .2016. Patterns of coral species richness and reef connectivity in Malaysia. Netherlands: Leiden University.

Wakum, A., M. Takdir, & S. Talakua. 2017. Jenis-Jenis Kima dan Kelimpahannya di Perairan Amdui Distrik Batanta Selatan Kabupaten Raja Ampat. Jurnal Sumberdaya Akuatik Indopasifik. 1(1): 43-52. https://doi.org/10.30862/jsai-fpik-unipa.2017.Vol.1.No.1.16

Walsh, P.S., D.A. Metzger, & R. Higuchi. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 10(4): 506-513. https://pubmed.ncbi.nlm.nih.gov/1867860/

Yusuf, C., Ambariyanto, and Hartati. 2009. Abundance of Tridacna (Family Tridacnidae) at Seribu Island and Manado Waters, Indonesia. Jurnal Ilmu Kelautan Universitas Diponegoro, 14(3):150-154. https://doi.org/10.14710/ik.ijms.14.3.150-154

Published
2023-12-31
How to Cite
HadadiN., MadduppaH., Shita AzaralyI., & AnggrainiN. P. (2023). DNA BARCODING, MORPHOLOGICAL IDENTIFICATION AND POPULATION DENSITY OF GENUS TRIDACNA IN NORTH MALUKU WATER. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 15(3), 349-368. https://doi.org/10.29244/jitkt.v15i3.47110