ALTERNATIVE MEASURING OF DISSOLVED OXYGEN IN THE WESTERN INDONESIAN SEAS DURING SOUTHEAST MONSOON
Abstract
The measurement of dissolved oxygen (DO) using the Winkler method has weaknesses, but can be solved by the spectrophotometric method. The purpose of this study was to measure the concentration of dissolved oxygen based on the spectrophotometric method in the western Indonesian Seas during the southeast monsoon of June 2015. The concentration of DO was measured according to the Lambert-Beer law using a wavelength of 466 nm. The results show that the oxygen concentration is high in the western of the Karimata Strait and low in the middle of the strait due to respiration and oxidation of organic matter. The oxygen concentration tends to be homogenous the entire of water column of western part of the Java Sea which indicates water well mixed and their concentration in the surface layer of the Sunda Strait was similar and gradually decreased with depth. The western Indonesian Seas is generally oversaturated corresponding to a quick oxygen air-sea water exchange. The results of the correlation of oxygen measurements between the spectrophotometric method and the sensor show a good performance, so that it can be used as an alternative in measuring dissolved oxygen concentrations and can be used over a wide range of oxygen concentrations in oceanic, fresh water and coastal areas.
References
Benson, B.B., & D. Krause. 1984. The concentration and isotopic fractionation of oxygen dissolved in fresh water and seawater in equilibrium with the atmosphere. Limnol. Oceanogr, 29: 620-632. https://doi.org/10.4319/lo.1984.29.3.0620
Badan Standar Nasional. 2004. Air dan air limbah. Bagian 14: Cara uji oksigen terlarut secara yodometri (modifikasi azida). SNI 06-6989.14-2004.
Bryan, J.R., J.P. Riley, B. Le, & P.J. Williams. 1976. A Winkler procedure for making precise measurements of oxygen concentration for productivity and related studies. J. Exp. Mar. Biol. Ecol., 21: 191-197. https://doi.org/10.1016/0022-0981(76)90114-3
Burger, J.D. & H.A. Liebhafsky. 1973. Thermodynamic data for aqueous iodine solutions at various temperatures. Anal. Chem, 45: 600-602. https://doi.org/10.1021/ac60325a044
Carpenter, J.H. 1965. The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol. Oceanogr., 10 (1): 141-143. https://doi.org/10.4319/lo.1965.10.1.0141
Carrit, D.E. & J.H. Carpenter. 1966. Recommendation procedure for Winkler analyses of sea water for dissolved oxygen. J. Mar. Res., 24: 313-318.
Dai, M, W. Zhai, W.-J. Cai, J. Callahan, B. Huang, S. Shang, T. Huang, X. Li, Z. Lu, W. Chen, & Z. Chen. 2008. Effects of an estuarine plume-associated bloom on carbonate system in the lower reaches of the Pearl River estuary and the coastal zone of the northern South China Sea. Continental Shelf Research, 28: 1416-1423. https://doi.org/10.1016/j.csr.2007.04.018
Fang. G., R.D. Susanto, S. Wirasantosa, F. Qiao, A. Supangat, B. Fan, Z. Wei, B. Sulistiyo, & S. Li. 2010. Volume, heat, and freshwater transports from the South China Sea to Indonesian Seas in the boreal winter of 2007-2008. Journal of Geophysical Research, 115: 1-11. https://doi.org/10.1029/2010JC006225
Gordon, A.L. 2005. Oceanography of the Indonesian seas and their throughflow. Oceanography, 18(4): 14–27. https://doi.org/10.5670/oceanog.2005.01
Grasshoff, K. 1976. Determination of oxygen (chapter 4). In: Grasshoff, K., Ehrhardt, M., Kremling, K. (eds.). Methods of seawater analysis. Second, revised and extended edition. Verlag Chemie, New York. 75-89pp.
Hamzah, F & M. Trenggono. 2014. Oksigen terlarut di Selat Lombok. Jurnal Kelautan Nasional, 9(1): 21-35. https://doi.org/10.15578/jkn.v9i1.6199
Hamzah, F., T. Agustiadi, R.D. Susanto, Z. Wei, L. Guo, Z. Cao, & Dai, M. 2020. Dynamics of the Carbonate System in the Western Indonesian Seas During the Southeast Monsoon. Journal of Geophysical Research: Oceans, 125, e2018JC014912. https://doi.org/10.1029/2018JC014912
Hendiarti, N., H. Siegel, & T. Ohde. 2004. Investigation of different coastal processes in Indonesian waters using SeaWiFS data. Deep Sea Research Part II: Topical Studies in Oceanography, 51: 85-97. https://doi.org/10.1016/j.dsr2.2003.10.003
Jalukse, L., I. Helm, O. Saks, & I. Leito. 2008. On the accuracy of micro Winkler titration procedures: a case study. Accred. Qual. Assur, 13: 575-579. https://doi.org/10.1007/s00769-008-0419-1
Labasque, T., C. Chaumery, A. Aminot, & G. Kergoat. 2004. Spectrophotometric Winkler determination of dissolved oxygen: re-examination of critical factors and reability. Marine Chemistry, 88: Issue 1-2: 53-60. https://doi.org/10.1016/j.marchem.2004.03.004
Millero, F. J. & M. L. Sohn. (1992). Chemical Oceanography. CRC Press Inc. Boca Ruton. Ann Arbor USA. 571p.
Murray, C.M., J.P. Riley. & T.R.S. Wilson. 1968. The solubility of oxygen in Winkler reagents used for the determination of dissolved oxygen. Deep-Sea Res., 15: 237–238. https://doi.org/10.1016/0011-7471(68)90046-6
Ni, X., D. Huang, D. Zeng, T. Zhang, H. Li & J. Chen. 2016. The Impact of wind mixing on the variation of bottom dissolved oxygen off the Chanjiang Estuary during Summer. Journal of Marine System, 154: 122-130. https://doi.org/10.1016/j.jmarsys.2014.11.010
Nowaczyk Jr, F. J., R.L. Schnaare, C.M. Ofner III., & R.J. Wigent. 1993. A spectrophotometric modification the Winkler method for measurement of dissolved Oxygen. Pharmaceutical Research, 10(2): 305-308. https://doi.org/10.1023/A:1018911600034
Pai, S-C., G-C. Gong, & K.K. Liu. 1993. Determination of dissolved oxygen in seawater by direct spectrophotometry of total iodine. Marine Chemistry, 41: 343-351. https://doi.org/10.1016/0304-4203(93)90266-Q
Parsons, T.R., M. Yoshiaki, & C.M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York.
Putri, M.R. 2005. Study of ocean climate variability (1959-2002) in the Eastern Indian Ocean, Java Sea and Sunda Strait using the HAMburg Shelf Ocean Model. Dissertation. Hamburg Univ. 117p.
Ramesh, S., G. A. Ramadass, M. Ravichandran, and M. A. Atmanand. 2013. Dissolved oxygen as a tracer for intermediate water mixing characteristics in the Indian Ocean. Current Science, 105 (12): 1724-1729. https://www.jstor.org/stable/24099754
Riley, J.P. 1975. In: Analytical Chemistry of Seawater. Chemical Oceanography, Vol. 3. Academic Press. London, 258pp.
Simanjuntak, M. 2009. Hubungan faktor lingkungan kimia, fisika terhadap distribusi plankton di Perairan Belitung Timur, Bangka Belitung. Jurnal Perikanan, 11(1): 31-45. https://doi.org/10.22146/jfs.2970
Susanto, R.D., Z. Wei, R.M. Adi, B. Fan, S. Li, & G. Fang. 2013. Observation of Karimata Strait throughflow from December 2007 to November 2009. Acta oceanol. Sin., 32(5): 1-6. https://doi.org/10.1007/s13131-013-0307-3
Susanto, R.D., Z. Wei, T.R. Adi, Q. Zheng, G. Fang, F. Bin, A. Supangat, T. Agustiadi, S. Li, M. Trenggono, & A. Setiawan. 2016. Oceanography Surrounding Krakatau Volcano in the Sunda Strait, Indonesia. Oceanography, 29(2): 228-237. https://doi.org/10.5670/oceanog.2016.31
Sverdrup, H.U., M.W. Johnson, & R.H. Fleming. 1942. The Ocean, their physics, chemistry and general biology. Prentice Hall, New York.
Wyrtki, K. 1961. Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand 1959-1961. Naga Report, 2. University of California, Scripps Institute of Oceanography, La Jolla, California.
Zhai. W.D., M. Dai, & W.-J. Cai. 2009. Coupling of surfaces pCO2 and dissolved oxygen in the northern South China Sea: impacts of contrasting coastal processes. Biogeosciences, 6: 2589-2598. https://doi.org/10.5194/bg-6-2589-2009
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Ilmu dan Teknologi Kelautan Tropis i is an open-access journal, meaning that all content is freely available without charge to the user or their institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without needing to request prior permission from the publisher or the author.
All articles published by Jurnal Ilmu dan Teknologi Kelautan Tropis are licensed under the Creative Commons Attribution 4.0 International License. This allows for unrestricted use, distribution, and reproduction in any medium, provided proper credit is given to the original authors.
Authors submitting manuscripts should understand and agree that the copyright of published manuscripts is retained by the authors. Copyright encompasses the exclusive rights of authors to reproduce, distribute, and sell any part of the journal articles in all forms and media. Reproduction of any part of this journal, its storage in databases, and its transmission by any form or media is allowed without written permission from Jurnal Ilmu dan Teknologi Kelautan Tropis.