DISTRIBUTION OF SALINITY AND TEMPERATURE IN MUSI ESTUARY: USING VERTICAL SALINITY GRADIENT FOR ESTUARY CLASSIFICATION ZONE

English

  • Septy Heltria Department of Fisheries Resources Utilization, Faculty of Animal Science, Jambi University, Muaro Jambi, 36361, Indonesia
  • Amir Yarkhasy Yuliardi Department of Marine Science, Faculty of Fisheries and Marine, PGRI Ronggolawe University, Tuban, 62381, Indonesia
  • Ratu Almira Kismawardhani Graduate School of Science, Department of Geophysics, Tohoku University, Miyagi. Japan
  • I Wayan Nurjaya Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, West Java, 16680. Indonesia
  • Lerma Yuni Siagian Department of Marine Science, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang, South Sumatera, 30128. Indonesia
  • Denny Alberto Satrya Gumay Department of Marine Science, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang, South Sumatera, 30128. Indonesia
Keywords: estuary, salinity zone classification, stratification, tidal exchange

Abstract

Musi estuary is the mouth of the Telang and Musi rivers directly adjacent to the Bangka Strait. During flood (ebb) we see the distribution of salinity increases (decreases) which is known through the vertical distribution using CTD. The TS diagram is used to see the water mass characteristics the study area. Data-Interpolating Variational Analysis (DIVA) method is used to interpolate and visualize data from vertical and spatial temperature, salinity and density data. The classification of the Musi estuary zone is identified based on the value of the distribution of salinity, which considers the exchange of circulating salinity at flood and ebb. The density of the water mass is significantly affected by the proven graded salinity. While the temperature distribution does not change significantly with depth, the spatial distribution indicates that the temperature in the estuary is lower than in the upstream and ocean areas. The spatial distribution of salinity indicates that high salinity enters the estuary towards the river further at flood than at ebb. Salinity distribution ranges from 0.5 to 30 psu and temperatures between 29 and 33 oC from horizontal and vertical sections. The pattern of salinity distribution in the Musi river estuary was identified, consisting of three zones representing salinity conditions in the study area, namely the Polyhaline, Mesohaline, and Olygohaline zones.

Downloads

Download data is not yet available.

References

Akter, A. & A.H. Tanim. 2021. Salinity distribution in river network of a partially mixed estuary. J. Waterw: Port, Coast. Ocean Eng., 147(2): 04020055. https://doi.org/10.1061/(asce)ww.1943-5460.0000621

Barth, A., J.M. Beckers, C. Troupin, A. Alvera-Azcárate, & L. Vandenbulcke. 2014. Divand-1.0: n-dimensional variational data analysis for ocean observations. Geosci: Model Dev, 7(1): 225–241. https://doi.org/10.5194/gmd-7-225-2014

Biguino, B., F. Sousa, & A.C Brito. 2021. Variability of currents and water column structure in a temperate estuarine system (Sado Estuary, Portugal). Water, 13(187): 1-13. https://doi.org/10.3390/w13020187

Bolanos, R., J.M. Brown, L.O. Amoudry, & A.J. Souza. 2013. Tidal, riverine, and wind influence on the circulation of macrotidal estuary. Journal of physical oceanography, 43(1): 29-50. https://doi.org/10.1175/JPO-D-11-0156.1

Canuel, E.A. & A.K. Hardison. 2015. Sources, ages, and alteration of organic matter in estuaries. Annu. Rev. Mar. Sci, (8): 409-434. https://doi.org/10.1146/annurev-marine-122414-034058

Cereja, R., V. Brotas, J.P. Cruz, M. Rodrigues & A.C. Brito. 2021. Tidal and physicochemical effects on phytoplankton community variability at tagus estuary (Portugal). Frontiers in Marine Science, (8): 1-21. https://doi.org/10.3389/fmars.2021.675699

Cole, K.L. & R.D. Hetland. 2016. The effects of rotation and river discharge on net mixing in small-mouth kelvin number plumes. J. Phys. Oceanogr, (46): 1421–1436. https://doi.org/10.1175/JPO-D-13-0271.1

Emery, W.J. & R.E. Thomson. 1998. Data analysis method in physical oceanography. BPC Weatons, Britain, 634 p.

Fratianni, C., N. Pinardi, F. Lalli, S. Simoncelli, G. Coppini, & V. Pesarino. 2016. Operational oceanography for the marine strategy framework directive: the case of the mixing indicator. J. Oper. Oceanogr, 9(1): 223–233. https://doi.org/10.1080/1755876X.2015.1115634

Geawhari, M.A., L. Huff, N. Mhammdi, A. Trakadas, & A. Ammar. 2014. Spatial-temporal distribution of salinity and temperature in the Oued Loukkos estuary, Morocco: using vertical salinity gradient for estuary classification. SpringerPlus, 3(1): 1-9. https://doi.org/10.1186/2193-1801-3-643

Geyer, W.R. & P. MacCready. 2014. The Estuarine Circulation. Annu. Rev. Fluid Mech, (46): 175–197. https://doi.org/10.1146/annurev-fluid-010313-141302

Guenther, C.B. & MacDonald, T.C. 2012. Comparison of Estuarine Salinity Gradients and Associated Nekton Community Change in the Lower St. Johns River Estuary. Estuaries and Coasts, 35, 1443-1452. https://doi.org/10.1007/s12237-012-9544-5

Heltria, S., I.W. Nurjaya, & L.G. Jonson. 2021. Turbidity front dynamics of the musi banyuasin estuary using numerical model and landsat 8 satellite. AACL Bioflux, 14(1): 1- 13. http://www.bioflux.com.ro/docs/2021.1-13.pdf

Horner-Devine, A.R., R.D. Hetland, & D.G. MacDonald. 2015. Mixing and transport in coastal river plumes. Annu. Rev. Fluid Mech, (47): 569–594. https://doi.org/10.1146/annurev-fluid-010313-141408

IOC, SCOR & IAPSO. 2010. The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 p.

Jovanovic, D., S. Gelsinari, L. Bruce, M. Hipsey, I. Teakle, M. Barnes, R. Coleman, A. Deletic, & D.T. Mccarthy. 2019. Modelling shallow and narrow urban salt-wedge estuaries: evaluation of model performance and sensitivity to optimise input data collection. Estuar. Coast. Shelf Sci., (217): 9–27. https://doi.org/10.1016/j.ecss.2018.10.022

Kelsey-Wilkinson, D. 2014. Assessing the impact of seasonal variations on the density structure of a weak freshwater plume. Plymouth Student Sci. (7): 14–31. http://hdl.handle.net/10026.1/14050

La Peyre, M.K., J. Geaghan, G.Decossas, & J.F. Peyre. 2016. Analysis of environmental factors influencing salinity patterns, oyster growth, and mortality in lower breton sound estuary, louisiana, using 20 years of data. Journal of Coastal Research, (319): 519–530. https://doi.org/10.2112/jcoastres-d-15-00146.1

MacDonald, D.G., J. Carlson, & L. Goodman. 2013. On the heterogeneity of stratified-shear turbulence: Observations from a near-field river plume. J. Geophys. Res. Oceans, (118): 6223–6237. https://doi.org/10.1002/2013JC008891

McLusky, D.S. 1993. Marine and estuarine gradients. Netherlands. J. Aquat. Ecol., (27): 489–493. https://doi.org/10.1007/BF02334809

Mendes, R., M.C. Sousa, M. deCastro, M. Gómez-Gesteira, & J.M. Dias. 2016. New insights into the western iberian buoyant plume: interaction between the douro and minho river plumes under winter conditions. Prog. Oceanogr., (141): 30–43. https://doi.org/10.1016/j.pocean.2015.11.006

Montagna, P., T.A. Palmer, & J.B. Pollack. 2013. Hydrological changes and estuarine dynamics. Springer Science & Business Media, Texas, 83 p. https://doi.org/10.1007/978-1-4614-5833-3

Samuel & S. Ajdi. 2007. Zonasi, karakteristik fisika-kimia air dan jenis-jenis ikan yang tertangkap di Sungai Musi, Sumatera Selatan. Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia, 15(1): 41-48. https://journal.ipb.ac.id/index.php/jippi/article/view/5257/3675

Sari, C.I., H. Surbakti, & Fauziah. 2013. Pola sebaran salinitas dengan model numerik dua dimensi di estuari sungai musi. J. Maspari, 5(2): 104 - 110. https://doi.org/10.36706/maspari.v5i2.2503

Slinger, J.H. 2017. Hydro-morphological modelling of small, wave-dominated estuaries. Estuar. Coast. Shelf Sci, (198): 583–596. https://doi.org/10.1016/j.ecss.2016.10.038

Supriatna S., T.G. Pin, & R. Kalipaksi. 2018. Estuarine boundaries on salinity with remote sensing of shallow sea tropical in Lampung Bay, Indonesia. AIP Conference Proceedings, 2023(02018): 1-5. https://doi.org/10.1063/1.5064178

Surbakti, H. 2012. Karakteristik pasang surut dan pola arus di estuari sungai musi, sumatera selatan. Jurnal Penelitian Sains, 5(1): 35-39. https://doi.org/10.26554/jps.v15i1.92

Uncles, R.J. & J.A. Stephens. 2011. The effects of wind, runoff and tides on salinity in a strongly tidal sub-estuary. Estuaries and Coasts, (34): 758–774. https://doi.org/10.1007/s12237-010-9365-3

Venice System. 1958. Symposium on the classification of brackish waters, archives for oceanography and limnology, Venice, 8–14 April 1958, 248p.

Wei, X., G.P. Schramkowski, & H.M. Schuttelaars. 2016. Salt dynamics in well-mixed estuaries: importance of advection by tides. J. Phys. Oceanogr, 46(5): 1457-1475. https://doi.org/10.1175/JPO-D-15-0045.1

Published
2022-08-30
How to Cite
Septy Heltria, Amir Yarkhasy Yuliardi, Ratu Almira Kismawardhani, I Wayan Nurjaya, Lerma Yuni Siagian, & Denny Alberto Satrya Gumay. (2022). DISTRIBUTION OF SALINITY AND TEMPERATURE IN MUSI ESTUARY: USING VERTICAL SALINITY GRADIENT FOR ESTUARY CLASSIFICATION ZONE : English. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 14(2), 217-231. https://doi.org/10.29244/jitkt.v14i2.40222