TURBIDITY FRONT DETECTION USING SENTINEL-2 SATELLITE IMAGE RELATIONSHIP WITH OCEANOGRAPHY IN BENGAWAN SOLO ESTUARY

  • Muhammad Abdul Ghofur Al Hakim IPB University
  • Setyo Budi Susilo IPB University
  • Jonson Lumban Gaol IPB University
Keywords: coastal turbidity, estuary, GIS, suspended sediment, remote sensing

Abstract

The estuary is a mixing area between the mass of fresh water and seawater, which causes substances in the bottom waters to rise to the surface so that nutrient concentrations become high. Research on estuary water mass confluence still needs to be carried out, especially regarding the turbidity front estuary. So far, this research is limited to in situ data. Therefore, remote sensing technology is trying to be applied to detect turbidity front estuary. This study aims to develop local TSS algorithms and detect turbidity fronts based on Sentinel-2 satellite imagery. This research method uses Sentinel-2 imagery to determine the turbidity front boundary based on TSS compared to in situ salinity data and TSS as data validation. The results of this study show that the empirical algorithm obtained from the band ratio (red/(blue+green+red)) on Sentinel-2 has the best results with a determination coefficient (R2) = 0.7409. The results of satellite imagery show that the turbidity front estuary occurs at a distance of 1,4 – 3 km, while the in situ data occurs at a distance of 2 – 4 km at the Bengawan Solo estuary. There is a difference in the TSS value of 1.9182 mg/L between the in situ data and satellite imagery in the turbidity front estuary area. Seasonal conditions, rainfall and tides affect the concentration and distance of the turbidity front from the river mouth.

Downloads

Download data is not yet available.

References

Adawiah, S.W., K.T. Setiawan, E. Parwati, & R. Faristyawan. 2021. Development of empirical model of Total Suspended Solid (TSS) by using Landsat 8 on the Coast of Bekasi Regency. IOP Conf Ser Earth Environ Sci., 750(1): 1–8. https://doi.org/10.1088/1755-1315/750/1/012039

Atmadipoera A.S., E. Kusmanto, A. Purwandana, & I.W. Nurjaya. 2015. Observation of coastal front and circulation in the Northeastern Java Sea, Indonesia. J Ilmu dan Teknol Kelaut Trop., 7(1): 91–108. https://doi.org/10.29244/jitkt.v7i1.9786

Belkin, I.M. & P.C. Cornillon. 2007. Fronts in the world ocean’s large marine ecosystems. Ices C. March: 1–33.

Dyer, K.R., M.C. Christie, & A.J. Manning. 2004. The effects of suspended sediment on turbulence within an estuarine turbidity maximum. Estuar Coast Shelf Sci., 59(2): 237–248. https://doi.org/10.1016/j.ecss.2003.09.002

Elangovan R, P.Y. Mudaliar, K. Rahaman, R. Muttavarapu, V. Rajan. 2013. Evaluation of noise climate in a campus environment using geospatial technology. Proc Meet Acoust. 19(2013). https://doi.org/10.1121/1.4800404

Elliott, M., & D.S. McLusky. 2002. The need for definitions in understanding estuaries. Estuar Coast Shelf Sci., 55(6): 815–827. https://doi.org/10.1006/ecss.2002.1031

Fathiyah, N., T.G. Pin, & R. Saraswati. 2017. Pola spasial dan temporal Total Suspended Solid (TSS) dengan Citra SPOT di Estuari Cimandiri, Jawa Barat. Ind Res Work Natl Semin., (1): 518–526. https://doi.org/10.35313/irwns.v8i3.600

Ge, J., R. Torres, C. Chen, J. Liu, Y. Xu, R. Bellerby, F. Shen, J. Bruggeman, & P. Ding. 2020. Influence of suspended sediment front on nutrients and phytoplankton dynamics off the Changjiang Estuary: A FVCOM-ERSEM coupled model experiment. J Mar Syst., 24 November 2019. https://doi.org/10.1016/j.jmarsys.2019.103292

Heltria, S., I.W. Nurjaya, & J.L. Gaol. 2021. Turbidity front dynamics of the musi banyuasin estuary using numerical model and landsat 8 satellite. AACL Bioflux, 14(1): 1–13. http://www.bioflux.com.ro/docs/2021.1-13.pdf

Hidayah, G., S.Y. Wulandari, & M. Zainuri. 2016. Studi sebaran klorofil-a secara horizontal di Perairan Muara Sungai Silugonggo Kecamatan Batangan, Pati. Bul Oseanografi Mar., 5(1): 52-59. https://doi.org/10.14710/buloma.v5i1.11296

Jabbar, A., T. Lihan, M.A. Mustapha, Z.A. Rahman, & S.A. Rahim. 2013. Variability of river plume signature deermined using staellite image. J Appl Sci. 13(1): 1–10.

Jumiarti, A. Pratomo, & D. Apdillah. 2014. Pola sebaran salinitas dan suhu di perairan teluk Riau Kota Tanjungpinang Provinsi Kepulauan Riau. J Umr. 1(1): 1–12. file:///C:/Users/ASUS/Downloads/E-journal-jumiarti%20(1).pdf

Katlane, R., C. Dupouy, B. E. Kilani, & J.C. Berges. 2020. Estimation of chlorophyll and turbidity using Sentinel 2a and EO-1 data in kneiss archipelago Gulf of Gabes, Tunisia. Int J Geosci. 11(10): 708–728. https://doi.org/10.4236/ijg.2020.1110035

Khairunnisa, K., D. Apdillah, & R.D. Putra. 2021. Karakteristik pasang surut di Perairan Pulau Bintan Bagian Timur menggunakan metode admiralty. J Kelaut Indones J Mar Sci Technol. 14(1): 58–69. https://doi.org/10.21107/jk.v14i1.9928

Kingsford, M.J. & I.M. Suthers. 1996. Dynamic estuary plumes and fronts : Importance to small fish and plankton in Coastal Waters Of NSW, Australia. 14(6): 655–672. file:///C:/BIBLIOGRAFIA/ARTIGOS PDF/PDFs Download/Bibliografia REF MAN PDF/0045 Kingsford & Suthers 2004.pdf.

Klemas, V. 2012. Remote sensing of coastal plumes and ocean fronts: Overview and case study. J Coast Res. 278: 1–7. https://doi.org/10.2112/jcoastres-d-11-00025.1

Luo, Z., W. Pan, L. Li, & G. Zhang. 2012. The study on three-dimensional numerical model and fronts of the Jiulong Estuary and the Xiamen Bay. Acta Oceanol Sin., 31(4): 55–64. https://doi.org/10.1007/s13131-012-0220-1

MacDonald, D.G. & W.R. Geyer. 2005. Hydraulic control of a highly stratified estuarine front. J Phys Oceanogr., 35(3): 374–387. https://doi.org/10.1175/JPO-2692.1

Mascarenhas, A.C.C., G.S. Gomes, A.P.Y. Lima, H.K.N. Da Silva, L.S. Santana, R.P. Rosário, & M. Rollnic. 2016. Seasonal variations of the amazon river plume with focus on the eastern sector. J Coast Res., 1(75): 532–536. https://doi.org/10.2112/SI75-107.1

Munthe, M. G., R. D. Putra, & Y.V. Jaya. 2007. Pemetaan zona potensial penangkapan ikan berdasarkan citra satelit aqua/terra modis di Perairan Selatan Laut Jawa. J Food Syst Res., 14(2): 70–75. https://doi.org/10.5874/jfsr.14.2_70

Najid, A., J.I. Pariwono, D.G. Bengen, S. Nurhakim, & A.S. Atmadipoera. 2012. Pola musiman dan antar tahunan salinitas permukaan laut di Perairan Utara Jawa-Madura. Maspari J., 4(2): 168–177. https://doi.org/10.56064/maspari.v4i2.1383

Nufus, H. & S. Karina. 2017. Analisis sebaran klorofil-a dan kualitas air di Sungai Krueng Raba Lhoknga, Aceh Besar. J Ilm Mhs Kelaut dan Perikan Unsyiah. 2(1): 58–65. https://jim.usk.ac.id/fkp/article/view/2523

Octaviana, A., Y. Prasetyo, & F.J. Amarrohman. 2020. Analisis perubahan nilai total suspended solid citra Sentinel-2A. J Geod Undip. 9 April: 167–176. https://ejournal3.undip.ac.id/index.php/geodesi/article/view/27178/23803

Pamungkas, C.A. 2019. Aplikasi penghitung jarak koordinat berdasarkan latitude dan longitude dengan metode euclidean distance dan metode haversine. J Inf Politek Indonusa Surakarta, 5(2): 8–13. https://doi.org/10.46808/informa.v5i2.74

Pertiwi, A.P., C.B. Lee, & D. Traganos. 2021. Cloud-native coastal turbid zone detection using multi-temporal Sentinel-2 data on google earth engine. Front Mar Sci. 8 September 2021. https://doi.org/10.3389/fmars.2021.699055

Sartika, M., L.M.G. Jaya, & Nurgiantoro. 2019. Pemetaan sebaran Total Suspended Solid (TSS) dan klorofil-a (chl-a) pada perairan Sungai Wanggu menggunakan citra Sentinel-2. J Geogr Apl dan Teknol., 3(2): 49–56. https://doi.org/10.5281/zenodo.3607250

Supriyadi, E., S. Siswanto, & W.S. Pranowo. 2019. Karakteristik pasang surut di perairan Pameungpeuk, Belitung, dan Sarmi berdasarkan metode admiralty. J Meteorol dan Geofis., 19(1): 29-38. https://doi.org/10.31172/jmg.v19i1.518

Syaban, M. & E. Ratnaningrum. 2021. Statistika Penelitian. Bandung: Informatika Bandung. 60-67.

Taufik, H.A., S. Saputro, & D.H. Ismunarti. 2015. Studi pasang surut untuk perubahan luas genangan akibat kenaikan muka air laut di perairan Banyuurip, Kabupaten Gresik. J Oceanogr., 4(1): 171–178. https://ejournal3.undip.ac.id/index.php/joce/article/view/7680/7440

Trinugroho, T., A. Satriadi, & M. Muslim. 2019. Sebaran thermal front musiman di wilayah perairan Selat Madura menggunakan single image edge detection. J Mar Res., 8(4): 416–423. https://doi.org/10.14710/jmr.v8i4.24815

Vinh, V.D., S. Ouillon, & U.D. Van. 2018. Estuarine turbidity maxima and variations of aggregate parameters in the Cam-Nam Trieu Estuary, North Vietnam, in Early Wet Season. Water, 10(1): 1-33. https://doi.org/10.3390/w10010068

Wibowo, Y.S.A., H. Hariadi, & J. Marwoto. 2016. Pengaruh arus laut dan pasang surut terhadap distribusi sedimen tersuspensi di perairan Muara Sungai Sembilangan Kaliprau Pemalang. J Oseanografi, 5: 490–497. https://ejournal3.undip.ac.id/index.php/joce/article/view/16111

Wijaya, A. 2019. Karakteristik perairan di Estuari Perancak Jembrana Bali. Pros Semin Nas Pengelolaan Pesisir Drh Aliran Sungai ke-1. September: 75–82. https://www.researchgate.net/publication/335161040

Wouthuyzen, S, S. Tarigan, & H. Indarto. 2008. Pengukuran salinitas permukaan teluk jakarta melalui penginderaan warna laut menggunakan data multi-temporal citra satelit Landsat-7 ETM +. Pit Mapin Xvii., siap terbit. https://www.scribd.com/doc/138037663/Sam-Wouthuyzen#

Zhou, W., S. Wang, Y. Zhou, & A. Troy. 2006. Mapping the concentrations of total suspended matter in Lake Taihu , China , using Landsat-5 TM data. Int J Remote Sens., 27(6): 1177–1191. https://doi.org/10.1080/01431160500353825

Published
2023-01-31
How to Cite
Al HakimM. A. G., SusiloS. B., & GaolJ. L. (2023). TURBIDITY FRONT DETECTION USING SENTINEL-2 SATELLITE IMAGE RELATIONSHIP WITH OCEANOGRAPHY IN BENGAWAN SOLO ESTUARY. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 14(3), 337-352. https://doi.org/10.29244/jitkt.v14i3.40172