A CONTRAST PATTERN OF REEF FISH SPECIES DIVERSITY AND DISTRIBUTION USING ENVIRONMENTAL DNA (eDNA) METABARCODING IN LONGITUDINAL DISTANCE FROM JAKARTA BAY

  • Lalu M Iqbal Sani
  • Azhari Benyamin
  • Alief K Husna
  • Dondy Arafat
  • Beginer Subhan
  • Adriani Sunuddin
  • Nadya Cakasana
  • Dea Fauzia Lestari
  • Dr. Hawis Madduppa
Keywords: anthropogenic, biodiversity, biomonitoring, coral reef, Next Generation Sequencing

Abstract

The existence of reef fish is certainly closely related to the existence of reefs coral because the ecosystem is a habitat for reef fish. Coral reefs are ecosystems that are commonly found on small islands in the tropics including the Seribu Islands. The Seribu Islands are a group of 110 islands located off the coast of Jakarta and up to 80 kilometers north of the Java Sea. In this study, we examined the species distribution and diversity of reef fish species on two different distance location in Jakarta Bay using environmental DNA (eDNA) metabarcoding analysis from two sites which are Untung Jawa Island and Harapan Island. The 4L eDNA seawater samples were collected at a depth of 8-9 meters at each site and then analysis using specific primer (MiFish U) of 12S rRNA. Overall, the higher species richness was found on Harapan Island (52 species) followed by Untung Jawa Island (11 species). The Shannon-Wiener Index also showed Harapan Island has higher reef fish diversity based on three taxonomic level (family, genus, and species). There were only five mutual reef fish species found in the two locations, namely Atherinomorus aetholepis, Auxis thazard, Cephalopholis sexmaculata, Epinephelus chlorostigma, and Plectropomus areolatus. The results of these findings in this current study are in line with anthropogenic pressure different where Untung Jawa Island is the closer one to Jakarta Bay than the Harapan Island that located relatively far from Jakarta Bay.

Downloads

Download data is not yet available.

References

Andruszkiewicz, E.A., H.A. Starks, F.P. Chavez, L.M. Sassoubre, B.A. Block, & A.B. Boehm. 2017. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS One, 12(4): e0176343. https://doi.org/10.1371/journal.pone.0176343

Bakker, J., O.S. Wangensteen, D.D. Chapman, G. Boussarie, D. Buddo, T.L. Guttridge, H. Hertler, D. Mouillot, L. Vigliola, & S. Mariani. 2017. Environmental DNA reveals tropical shark diversity in contrasting levels of anthropogenic impact. Scientific reports, 7(1): 1-11. https://doi.org/10.1038/s41598-017-17150-2

Barnes, M.A. & C.R. Turner. 2016. The ecology of environmental DNA and implications for conservation genetics. Conservation genetics, 17(1): 1-17. https://doi.org/10.1007/s10592-015-0775-4

Baum, G., I. Kusumanti, A. Breckwoldt, S.C. Ferse, M. Glaser, L. Adrianto, S. van der Wulp, & A. Kunzmann. 2016. Under pressure: Investigating marine resource-based livelihoods in Jakarta Bay and the Thousand Islands. Marine pollution bulletin, 110(2): 778-789. https://doi.org/10.1016/j.marpolbul.2016.05.032

Choat, J.H. & D.R. Bellwood. 1991. Reef Fishes: Their History and Evolution. In The ecology of fishes on coral reefs. Academic press. pp. 39-66.

Darwin, C. 2020. The Structure and Distribution of Coral Reefs. University of California Press. https://doi.org/10.1525/9780520327337

Dearden, P., M. Theberge, & M. Yasué. 2010. Using underwater cameras to assess the effects of snorkeler and SCUBA diver presence on coral reef fish abundance, family richness, and species composition. Environmental monitoring and assessment, 163(1): 531-538. https://doi.org/10.1007/s10661-009-0855-3

DiBattista, J.D., D.J. Coker, T.H. Sinclair-Taylor, M. Stat, M.L. Berumen, & M. Bunce. 2017. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea. Coral Reefs, 36(4): 1245-1252. https://doi.org/10.1007/s00338-017-1618-1

Dollar, S.J. & R.W. Grigg. 2004. Anthropogenic and natural stresses on selected coral reefs in Hawai'i: A multidecade synthesis of impact and recovery. Pacific Science, 58(2): 281-304. https://doi.org/10.1353/psc.2004.0016.

Evans, N.T., Y. Li, M.A. Renshaw, B.P. Olds, K. Deiner, C.R. Turner, C.L. Jerde, D.M. Lodge, G.A. Lamberti, & M.E. Pfrender. 2017. Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering. Canadian Journal of Fisheries and Aquatic Sciences, 74(9): 1362-1374. https://doi.org/10.1139/cjfas-2016-0306

Farhan, A.R. & Lim S. 2012. Vulnerability assessment of ecological conditions in Seribu Islands, Indonesia. Ocean & coastal management, 1(65): 1-4. https://doi.org/10.1016/j.ocecoaman.2012.04.015

Gelis, E.R.E., M.M. Kamal, B. Subhan, I. Bachtiar, L.M.I Sani, & H. Madduppa. 2021. Environmental biomonitoring of reef fish community structure with eDNA metabarcoding in the Coral Triangle. Environmental Biology of Fishes, 1-17. https://doi.org/10.1007/s10641-021-01118-3

Graham, N.A.J. & K.L. Nash. 2013. The importance of structural complexity in coral reef ecosystems. Coral reefs, 32(2): 315-326. https://doi.org/10.1007/s00338-012-0984-y

Huhn, M., H.H. Madduppa, M. Khair, A. Sabrian, Y. Irawati, N.P. Anggraini, S.P. Wilkinson, T. Simpson, K. Iwasaki, D.H. Setiamarga, & P.J. Dias. 2020. Keeping up with introduced marine species at a remote biodiversity hotspot: awareness, training and collaboration across different sectors is key. Biological Invasions, 22(2): 749-771. https://doi.org/10.1007/s10530-019-02126-2

Hutami, R., N. Idzni, R. Ranasasmita, & M. Suprayatmi. 2017. Metode ekstraksi dna untuk deteksi molekuler. Jurnal Pertanian, 8(2): 106-112. https://doi.org/10.30997/jp.v8i2.1056

Jeníková, G., J. Pazlarová, & K. Demnerová. 2000. Detection of Salmonella in food samples by the combination of immunomagnetic separation and PCR assay. International Microbiology, 3(4): 225-229. https://pubmed.ncbi.nlm.nih.gov/11334305/

Jørgensen, S.E., F.L. Xu, F. Salas, & J.C. Marques. 2005. Application of indicators for the assessment of ecosystem health. Handbook of ecological indicators for assessment of ecosystem health, 2: 5-65. https://archive.epa.gov/solec/web/pdf/ecological_indicators.pdf

Kelly, L.W., G.J. Williams, K.L. Barott, C.A. Carlson, E.A. Dinsdale, R.A. Edwards, A.F. Haas, M. Haynes, Y.W. Lim, T. McDole, & C.E. Nelson. 2014. Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proceedings of the National Academy of Sciences, 111(28): 10227-10232. https://doi.org/10.1073/pnas.1403319111

Komyakova, V., P.L. Munday, & G.P. Jones. 2013. Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities. PloS one, 8(12): p.e83178. https://doi.org/10.1371/journal.pone.0083178

Li, Y., N.T. Evans, M.A. Renshaw, C.L. Jerde, B.P. Olds, A.J. Shogren, K. Deiner, D.M. Lodge, G.A. Lamberti, & M.E. Pfrender. 2018. Estimating fish alpha-and beta-diversity along a small stream with environmental DNA metabarcoding. Metabarcoding and Metagenomics, 2: p.e24262. https://doi.org/10.3897/mbmg.2.24262

Laramie, M.B., D.S. Pilliod, & C.S. Goldberg. 2015. Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biological Conservation, 183: 29-37. https://doi.org/10.1016/j.biocon.2014.11.025

Lodge, D.M., C.R. Turner, C.L. Jerde, M.A. Barnes, L. Chadderton, S.P. Egan, J.L. Feder, A.R. Mahon, & M.E. Pfrender. 2012. Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Molecular ecology, 21(11): 2555-2558. https://doi.org/10.1111/j.1365-294X.2012.05600.x

Madduppa, H. 2013. Bioekologi dan Biosistematika Ikan Terumbu, Teknik Sampling Genetika & Monitoring Ikan Studi Kasus Kepulauan Seribu Petunujuk Identifikasi Ikan di Indonesia. First Edition. IPB Press. 31 p.

Madduppa, H.H., B. Subhan, E. Suparyani, A.M. Siregar, D. Arafat, S.A. Tarigan, A. Alimuddin, D. Khairudi, F. Rahmawati, & A. Brahmandito. 2013. Dynamics of fish diversity across an environmental gradient in the Seribu Islands reefs off Jakarta. Biodiversitas Journal of Biological Diversity, 14(1): 17-24. https://doi.org/10.13057/biodiv/d140103

Madduppa, H.H., K. von Juterzenka, M. Syakir, & M. Kochzius. 2014. Socio-economy of marine ornamental fishery and its impact on the population structure of the clown anemonefish Amphiprion ocellaris and its host anemones in Spermonde Archipelago, Indonesia. Ocean & coastal management, 100: 41-50. https://doi.org/10.1016/j.ocecoaman.2014.07.013

Madduppa, H., N.K.D. Cahyani, A.W. Anggoro, B. Subhan, E. Jefri, L.M.I Sani, D. Arafat, N. Akbar, & D.G. Bengen. 2021. eDNA metabarcoding illuminates species diversity and composition of three phyla (chordata, mollusca and echinodermata) across Indonesian coral reefs. Biodiversity and Conservation, 3087-3114. https://doi.org/10.1007/s10531-021-02237-0

Magurran, A.E. 2013. Measuring biological diversity. John Wiley & Sons, ltd. Oxford. 50 p.

Marwayana, O.N., Z. Gold, C.P. Meyer, & P.H. Barber. 2021. Environmental DNA in a global biodiversity hotspot: Lessons from coral reef fish diversity across the Indonesian archipelago. Environmental DNA, 00: 1-17. https://doi.org/10.1002/edn3.257

Miya, M., R.O. Gotoh, & T. Sado. 2020. MiFish metabarcoding: a high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples. Fisheries Science, 1-32. https://doi.org/10.1007/s12562-020-01461-x

Miya, M., Y. Sato, T. Fukunaga, T. Sado, J.Y. Poulsen, K. Sato, T. Minamoto, S. Yamamoto, H. Yamanaka, H. Araki, & M. Kondoh. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society open science, 2(7): p.150088. https://doi.org/10.1098/rsos.150088

Nguyen, B.N., E.W. Shen, J. Seemann, A.M. Correa, J.L. O’Donnell, A.H. Altieri, N. Knowlton, K.A. Crandall, S.P. Egan, W.O. McMillan, & M. Leray. 2020. Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape. Scientific reports, 10(1): 1-14. https://doi.org/10.1038/s41598-020-63565-9

Nybakken, J.W. 2001. Marine biology: an ecological approach (Vol. 5). Benjamin Cummings. San Francisco.

Paulangan, Y.P., A. Fahrudin, D. Sutrisno, & D.G. Bengen. 2019. Keanekaragaman dan kemiripan bentuk profil terumbu berdasarkan ikan karang dan lifeform karang di Teluk Depapre Jayapura, Provinsi Papua, Indonesia. Jurnal Ilmu dan Teknologi Kelautan Tropis, 11(2): 249-262. https://doi.org/10.29244/jitkt.v11i2.24140

Prabowo, B., K. Fahlevy, N.F.D. Putra, M. Rizqydiani, B.M.K. Rahman, A. Habibie, B. Subhan, & H. Madduppa. 2019. Trophic structure of reef fishes and relationship of corallivore fishes with hard coral in Kepulauan Seribu, Jakarta. In IOP Conference Series: Earth and Environmental Science, 278(1): p. 012059. https://doi.org/10.1088/1755-1315/278/1/012059

Pratiwi, W.N., T. Nurlambang, & M.H.D. Susilowati. 2021. Households electricity consumption patterns in small island–case study: Kepulauan Seribu regency, DKI Jakarta. In IOP Conference Series: Earth and Environmental Science 649(1): p. 012010. https://doi.org/10.1088/1755-1315/649/1/012010

Rachello-Dolmen, P.G. & D.F.R. Cleary. 2007. Relating coral species traits to environmental conditions in the Jakarta Bay/Pulau Seribu reef system, Indonesia. Estuarine, Coastal and Shelf Science, 73(3-4): 816-826. https://doi.org/10.1016/j.ecss.2007.03.017

Razak, A. & R. Suprihardjo. 2013. Pengembangan kawasan pariwisata terpadu di Kepulauan Seribu. Jurnal Teknik ITS, 2(1): C14-C19. https://doi.org/10.12962/j23373539.v2i1.2461

Rees, J.G., D. Setiapermana, V.A. Sharp, J.M. Weeks, & T.M. Williams. 1999. Evaluation of the impacts of land-based contaminants on the benthic faunas of Jakarta Bay, Indonesia. Oceanologica Acta, 22(6): 627-640. https://doi.org/10.1016/S0399-1784(00)88954-9

Rumkorem, O.L.Y., R. Kurnia, & F. Yulianda. 2019. Asosiasi antara tutupan komunitas karang dengan komunitas ikan terumbu karang di Pesisir Timur Pulau Biak, Kabupaten Biak Numfor. Jurnal Ilmu dan Teknologi Kelautan Tropis, 11(3): 615-625. https://doi.org/10.29244/jitkt.v11i3.23375

Setiawan, F., J.D. Kusen, & G.J. Kaligis. 2013. Community changes of coral reef fishes in Bunaken National Park, North Sulawesi, Indonesia. Aquatic Science & Management, 1(2): 117-123. https://doi.org/10.35800/jasm.1.2.2013.7273

Sale, P.F. 1991. Reef fish communities: open nonequilibrial systems. The ecology of fishes on coral reefs, 564-598. http://www.vliz.be/en/imis?refid=9169

Sale, P.F. 1977. Maintenance of high diversity in coral reef fish communities. The American Naturalist, 111(978): 337-359. https://doi.org/10.1086/283164

Sato, Y., M. Miya, T. Fukunaga, T. Sado, & W. Iwasaki. 2018. MitoFish and MiFish pipeline: a mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Molecular biology and evolution, 35(6): 1553-1555. https://doi.org/10.1093/molbev/msy074

Sumarno, D. & T. Muryanto. 2016. Kadar salinitas, oksigen terlarut, dan suhu air di unit terumbu karang buatan (TKB) Pulau Kotok Kecil dan Pulau Harapan Kepulauan Seribu–Provinsi DKI Jakarta. Buletin Teknik Litkayasa Sumber Daya dan Penangkapan, 12(2): 121-126. https://doi.org/10.15578/btl.12.2.2014.121-126

Taberlet, P., E. Coissac, M. Hajibabaei, & L.H. Rieseberg. 2012. Environmental DNA. molecular ecology. Molecular Ecology, 21(8): 1789-1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x

Takahara, T., T. Minamoto, H. Yamanaka, H. Doi, & Z.I. Kawabata. 2012. Estimation of fish biomass using environmental DNA. PloS one, 7(4): p.e35868. https://doi.org/10.1371/journal.pone.0035868

Thomsen, P.F., J. Kielgast, L.L. Iversen, P.R. Møller, M. Rasmussen, & E. Willerslev. 2012. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS one, 7(8): e41732. https://doi.org/10.1371/journal.pone.0041732

Tilot, V., W. Leujak, R.F.G. Ormond, J.A. Ashworth, & A. Mabrouk. 2008. Monitoring of South Sinai coral reefs: influence of natural and anthropogenic factors. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(7): 1109-1126. https://doi.org/10.1002/aqc.942

Tringe, S.G. & E.M. Rubin. 2005. Metagenomics: DNA sequencing of environmental samples. Nature reviews genetics, 6(11): 805-814. https://doi.org/10.1038/nrg1709

van der Wulp, S.A., A. Damar, N. Ladwig, & K.J. Hesse. 2016. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia. Marine pollution bulletin, 110(2): 675-685. https://doi.org/10.1016/j.marpolbul.2016.05.015

Verma, D. & T. Satyanarayana. 2011. An improved protocol for DNA extraction from alkaline soil and sediment samples for constructing metagenomic libraries. Applied biochemistry and biotechnology, 165(2): 454-464. https://doi.org/10.1007/s12010-011-9264-5

Wang, S., Z. Yan, B. Hänfling, X. Zheng, P. Wang, J. Fan, & J. Li. 2021. Methodology of fish eDNA and its applications in ecology and environment. Science of the Total Environment, 755: 142622. https://doi.org/10.1016/j.scitotenv.2020.142622

Westermeier, R. 2016. Electrophoresis in practice: a guide to methods and applications of DNA and protein separations. John Wiley & Sons, ltd. Oxford.

Wielgus, J., N.E. Chadwick-Furman, & Z. Dubinsky. 2004. Coral cover and partial mortality on anthropogenically impacted coral reefs at Eilat, northern Red Sea. Marine Pollution Bulletin, 48(3-4): 248-253. https://doi.org/10.1016/j.marpolbul.2003.08.008

Zaneveld, J.S. & H.T. Verstappen. 1952. A Recent Investigation on the Geomorphology and Flora of Some Coral Islands in the Bay of Djakarta. Kementerian Pertahanan, Direktorat Topografi Angkatan Darat, Dinas Geografi.

Published
2021-12-31
How to Cite
SaniL. M. I., BenyaminA., HusnaA. K., ArafatD., SubhanB., SunuddinA., CakasanaN., LestariD. F., & MadduppaD. H. (2021). A CONTRAST PATTERN OF REEF FISH SPECIES DIVERSITY AND DISTRIBUTION USING ENVIRONMENTAL DNA (eDNA) METABARCODING IN LONGITUDINAL DISTANCE FROM JAKARTA BAY. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 13(3), 467-482. https://doi.org/10.29244/jitkt.v13i3.37971