Spatial and Temporal Variation of Zooplankton Composition Near Whale Shark Sightings in Probolinggo of East Java, Indonesia Spatial and Temporal Variation of Zooplankton Composition Near Whale Shark Sightings in Probolinggo of East Java, Indonesia
Abstract
Whale shark occurrence in Probolinggo differs from other Indonesian locales, suggesting a link to zooplankton availability. Zooplankton composition and whale shark emergence are the focus of this study. From December 2017 to November 2018, six observation points were made each month. A plankton net filters and lugol preserves water. Olympus CX23 microscope observations were repeated twice. The spatial analysis revealed varying whale shark numbers at each station (Chi-square test, X2 = 1418.6, P <0.05), with six sharks observed at station PR_5. Zooplankton numbers were similar at each location. Temporal analysis revealed significant differences in whale shark appearance each month (Chi-square test, X2 = 81.04, P <0.05), with March and November having the highest appearance among the three individuals. The amount of zooplankton varied (Chi-square test, X2 = 148.61, P <0.05), with the highest abundance in April and March. Whale shark appearance and zooplankton composition were not correlated (r = 0.01, P< 0.05) both geographically and temporally. Whale sharks were linked to zooplankton kinds. Results indicate whale sharks are particularly interested in Acartia sp. (r = 0.3, P < 0.05). This suggests that whale sharks' appearance is determined by their demand for food, not zooplankton availability.
References
Bojanić, N., M. Šolić, N. Krstulović, S. Šestanović, I. Marasović, and Ž. Ninčević. 2005. Temporal variability in abundance and biomass of ciliates and copepods in the eutrophicated part of Kaštela Bay (Middle Adriatic Sea). Helgol. Mar. Res., 59(2): 107–120. https://doi.org./10.1007/s10152-004-0199-x
Boldrocchi, G., M. Omar, A. Azzola, and R. Bettinetti. 2020. The ecology of the whale shark in Djibouti. Aquat. Ecol., 54(2): 535-551. https://doi.org/10.1007/s10452-020-09758-w
Boldrocchi, G., Y.M. Omar, D. Rowat, and R. Bettinetti. 2018. First results on zooplankton community composition and contamination by some persistent organic pollutants in the Gulf of Tadjoura (Djibouti) science of the total environment first results on zooplankton community composition and contamination by some p. Sci. Total Environ., 627(February): 812–821. https://doi.org/10.1016/j.scitotenv.2018.01.286
Cade, D.E., J.J. Levenson, R. Cooper, R. de la Parra, D.H. Webb, and A.D. Dove. 2020. Whale sharks increase swimming effort while filter feeding, but appear to maintain high foraging efficiencies. Journal of Experimental Biology. 223(11): p.jeb224402. https://doi.org/10.1242/jeb.224402.
Cárdenas-Palomo, N., J. Herrera-Silveira, I. Velázquez-Abunader, O. Reyes, and U. Ordoñez. 2015. Distribution and feeding habitat characterization of whale sharks Rhincodon typus in a protected area in the north Caribbean Sea. J. Fish Biol., 86(2): 668–686. https://doi.org/10.1111/jfb.12589
Conway, D.V.P. 2012. Marine Zooplankton of Southern Britain Part 1: Radiolaria, Heliozoa, Foraminifera, Ciliophora, Cnidaria, Ctenophora, Platyhelminthes, Nemertea, Rotifera and Mollusca. Mar. Zooplankt. South. Britain, (25): 10-139. http://plymsea.ac.uk/id/eprint/5631
Dar, I.A., H.A. Rather, and M.A. Dar. 1970. Dynamics of zooplankton in relation to physico-chemical factors. Our Nat., 7(1): 168–176. https://doi.org/10.3126/on.v7i1.2567
de la Parra Venegas, R., R. Hueter, J.G. Cano, J. Tyminski, J.G. Remolina, M. Maslanka, A. Ormos, L. Weigt, B. Carlson, and A. Dove. 2011. An unprecedented aggregation of whale sharks, Rhincodon typus, in Mexican coastal waters of the Caribbean sea. PLoS One, 6(4): p.e18994. https://doi.org/10.1371/journal.pone.0018994
De, Veaux, R.D., P.F. Velleman, D.E. Bock, A.M. Vukov, and A.C. Wong. 2005. Stats: data and models. Boston: Pearson/Addison Wesley. 652-708 pp.
Feng, M., W. Zhang, W. Wang, G. Zhang, T. Xiao, and H. Xu. 2015. Can tintinnids be used for discriminating water quality status in marine ecosystems?. Marine pollution bulletin. 101(2): 549-555. https://doi.org/10.1016/j.marpolbul.2015.10.059.
Fonda, S. Umani, and A. Beran. 2003. Seasonal variations in the dynamics of microbial plankton communities: First estimates from experiments in the Gulf of Trieste, Northern Adriatic Sea. Mar. Ecol. Prog. Ser., 247: 1–16. https://doi.org/10.3354/meps247001
Graham, R.T., C.M. Roberts, and J.C.R. Smart. 2006. Diving behaviour of whale sharks in relation to a predictable food pulse. J. R. Soc. Interface, 3(6): 109–116. https://doi.org/10.1098/rsif.2005.0082
Hacohen-Domene, A., F. Galvan-Magana, and J. Ketchum-Mejia. 2006. Abundance of whale shark (Rhincodon typus) preferred prey species in the southern Gulf of California, Mexico. Cybium, 30(4): 99–102. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18651430
Hernandez-Nava, M.F. and S. Alvarez-Borrego. 2013. Zooplankton in a whale shark (Rhincodon typus) feeding area of Bahia de los Angeles (Gulf of California). Hidrobiologica, 23(2): 198–208. https://hidrobiologica.izt.uam.mx/hidrobiologica/index.php/revHidro/article/view/638
Heyman, W.D., R.T. Graham, B. Kjerfve, and R.E. Johannes. 2001. Whale sharks Rhincodon typus aggregate to feed on fish spawn in Belize. Mar. Ecol. Prog. Ser., 215: 275–282. https://doi.org/10.3354/meps215275
Himawan, M.R. 2017. Komposisi hiu paus berdasarkan jenis kelamin, ukuran, perilaku kemunculan serta ancaman keberadaannya di Perairan Indonesia [tesis]. Bogor : Institut Pertanian Bogor. Page: 11-12
Himawan, M.R., C. Tania, B.A.Noor, A. Wijonarno, B. Subhan, and H. Madduppa. 2015. Sex and size range composition of whale shark (Rhincodon typus) and their sighting behaviour in relation with fishermen lift-net within Cenderawasih Bay National Park, Indonesia. Aquaculture, Aquarium, Conservation and Legislation, 8(2): 123-133. http://www.bioflux.com.ro/aacl
Hoffmayer, E.R., J.S. Franks, W.B. Driggers, K.J. Oswald, and J.M. Quattro. 2007. Observations of a feeding aggregation of whale sharks, Rhincodon typus, in the North Central Gulf of Mexico. Gulf Caribb. Res., 19(2): 69–73. https://doi.org/10.18785/gcr.1902.08
Jiang, Y., G. Xu, and H. Xu. 2016. Use of multivariate dispersion to assess water quality based on species composition data. Environmental Science and Pollution Research. 23: 3267-3272. https://doi.org/10.1007/s11356-015-5583-3
Jungbluth, M.J., K.E. Selph, P.H. Lenz, and E. Goetze. 2017. Species-specific grazing and significant trophic impacts by two species of copepod nauplii, Parvocalanus crassirostris and Bestiolina similis. Marine Ecology Progress Series. 572: 57-76. https://doi.org/10.3354/meps12139.
Kamal, M.M., D. Ardania, and M.T. Hartanto. 2020. Abundance and composition of potential food items of whale shark (Rhincodon typus Smith, 1828) in Probolinggo waters , East Java Province. Eco. Env. Cons., 26(2007): 37–41. http://www.envirobiotechjournals.com/EEC/v26JuneSuppl2020/EEC-7.pdf
Kamal, M.M., Y. Wardiatno, and N.S. Noviyanti. 2016. Habitat conditions and potential food items during the appearance of whale sharks (Rhincodon typus) in Probolinggo waters, Madura. The 4th International Whale Shark Conference, Hamad bin Khalifa University Press, 2016(2): 27p. https://doi.org/10.5339/qproc.2016.iwsc4.27
Ketchum, J. T., F. Galván-Magaña, and AP. Klimley. 2013. Segregation and foraging ecology of whale sharks, Rhincodon typus, in the southwestern Gulf of California. Environmental Fish Biology, 96: 779–755. https://doi. org/10.1007/s10641-012-0071-9.
Kiørboe, T. 2011. What makes pelagic copepods so successful? J. Plankton Res., 33(5): 677–685. https://doi.org/10.1093/plankt/fbq159
Klais, R., M. Lehtiniemi, G. Rubene, A. Semenova, P. Margonski, A. Ikauniece, M. Simm, A. Põllumäe, E. Grinienė, K. Mäkinen, et al.,., 2016. Spatial and temporal variability of zooplankton in a temperate semi-enclosed sea: implications for monitoring design and long-term studies. J. Plankton Res., 38(3): 652–661. https://doi.org/10.1093/plankt/fbw022
Lavaniegos, B., G. Heckel, and P. de Guevara. 2017. Seasonal variability of copepods and cladocerans in Bahía de los Ángeles (Gulf of California) and importance of Acartia clausi as food for whale sharks. Ciencias Mar., 38(2012): 11–30. https://doi.org/10.7773/cm.v38i1A.2017
Lawson, C.L., L.G. Halsey. G.C. Hays, C.L. Dudgeon, N.L. Payne, M.B. Bennett, C.R. White, and A.J. Richardson. 2019. Powering Ocean Giants : The energetics of Shark and Ray megafauna. Trends Ecol. Evol. 34: 1009–1021. http://dx.doi.org/10.1016/j.tree.2019.07.001.
Marliana, S.N., M. Bataona, and E.N. Ihsan. 2018. Zooplankton communities in Cenderawasih Bay National Park, West Papua: can their composition be used to predict whale shark Rhincodon typus Smith, 1828 appearance frequencies?. IOP Conference Series: Earth and Environmental Science, 139(1): 012012. https://doi.org/10.1088/1755-1315/139/1/012012.
Marshall, S.M. and A.P. Orr. 1966. Respiration and feeding in some small copepods. J. Mar. Biol. Assoc. United Kingdom., 46(3): 513–530. https://doi.org/10.1017/S0025315400033312
McKinney, J.A., E.R. Hoffmayer, W. Wu, R. Fulford, and J.M. Hendon. 2012. Feeding habitat of the whale shark Rhincodon typus in the northern Gulf of Mexico determined using species distribution modelling. Mar. Ecol. Prog. Ser., 458: 199–211. https://doi.org/10.3354/meps09777
Meekan, M.G., S.N. Jarman, C. McLean, and M.B. Schultz. 2009. DNA evidence of whale sharks (Rhincodon typus) feeding on red crab (Gecarcoidea natalis) larvae at christmas Island, Australia. Mar. Freshw. Res., 60(6): 607–609. https://doi.org/10.1071/MF08254
Nelson, J.D. and S.A. Eckert. 2007a. Foraging ecology of whale sharks (Rhincodon typus) within Bahía de Los Angeles, Baja California Norte, México. Fish. Res., 84(1): 47–64. https://doi.org/10.1016/j.fishres.2006.11.013
Nour, and N.M. El-Din. 2001. Ecological investigation of the tintinnid community along the coastal waters of Alexandria, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 5(3): 165-177. https://ejabf.journals.ekb.eg/article_1698.html
https://ejabf.journals.ekb.eg/article_1698_dcf6ad7ef870e2e5ec148a8e0f098c06.pdf
Nugroho, T.T., M. Najib, and K. Kirbrandoko, K. 2018. Determination of competitiveness based on core competency analysis (case study on mangrove ecotourism in East Java). Matrik J. Manajemen, Strateg. Bisnis Dan Kewirausahaan 12(1): 25-32. https://doi.org/10.24843/MATR IK-JMBK.2018/V12.I01.P03
Nuriyanto, M.Z., F.A. Firmansyah, and I. Prasetyo. 2019. Analisis perubahan bentang geomorfologi pantai Bentar Kabupaten Probolinggo. Maj. Pembelajaran Geogr., 2(1): 99-109. <https://jurnal.unej.ac.id/index.php/PGEO/article/view/11523>
Oxford University. 2017. Marine plankton: A practical guide to ecology, methodology, and taxonomy. Castellani C, and Edwards M. eds. Oxford University Press. 181-609 pp.
Pierce, R.W. and J.T. Turner. 1993. Global biogeography of marine tintinnids. Mar. Ecol. Prog. Ser., 94(1): 11–26. https://doi.org/10.3354/meps094011.
Pierce, S.J., B. Norman. 2016. Rhincodon typus. In: The IUCN Red List of Threatened Species 2016. e.T19488A2365291. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T19488A2365291.en.
Potvin, J., A.J. Werth. 2017. Oral cavity hydrodynamics and drag production in Balaenid whale suspension feeding. PLoS ONE 12: e0175220. https://doi.org/10.1371/journal.pone.0175220.
Rakshit, D., K. Murugan, J.K. Biswas, K.K. Satpathy, P.S. Ganesh, and S.K. Sarkar, S.K. 2017. Environmental impact on diversity and distribution of tintinnid (Ciliata: Protozoa) along Hooghly Estuary, India: a multivariate approach. Regional Studies in Marine Science. 12: 1-10. https://doi.org/10.1016/j.rsma.2017.02.007.
Reyes-Mendoza, O., N. Cárdenas-Palomo, J. Herrera-Silveira, E. Mimila-Herrera, J. Trujillo-Córdova, X. Chiappa-Carrara, and D. Arceo-Carranza. 2021. Quantity and quality of prey available for the whale shark (Rhincodon typus, Smith 1828) at the Mexican Caribbean aggregation site. Regional Studies in Marine Science, 43: 101696. https://doi.org/10.1016/j.rsma.2021.101696.
Robinson, D.P., M.Y. Jaidah, S. Bach, K. Lee, W. Jabado, C.A. Rohner, A. March, and S. Caprodossi. 2016. Population structure, Abundance and movement of Whale Sharks in the Arabian Gulf and the Gulf of Oman. PLos ONE. 11(6), http://dx.doi.org/10.1371/journal.pone.0158593
Rohner, C.A., A.J. Armstrong, S.J. Pierce, C.E.M. Prebble, E.F. Cagua, J.E.M. Cochran, M.L. Berumen, and A.J. Richardson. 2015. Whale sharks target dense prey patches of sergestid shrimp off Tanzania. J. Plankton Res. 37: 352–362. http://dx.doi.org/10.1093/plankt/fbv010
Rowat, D., K. Brooks, A. March, C. McCarten, D. Jouannet, L. Riley, G. Jeffreys, M. Perri, M. Vely, and B. Pardigon. 2011. Long-term membership of whale sharks (Rhincodon typus) in coastal aggregations in Seychelles and Djibouti. Mar. Freshw. Res., 62(6): 621–627. https://doi.org/10.1071/MF10135
Rowat, D. and U. Engelhardt. 2007. Seychelles: A case study of community involvement in the development of whale shark ecotourism and its socio-economic impact. Fish. Res., 84(1): 109–113. https://doi.org/10.1016/j.fishres.2006.11.018
Rowat, D. and M. Gore. 2007. Regional scale horizontal and local scale vertical movements of whale sharks in the Indian Ocean off Seychelles. Fish. Res., 84(1): 32–40. https://doi.org/10.1016/j.fishres.2006.11.009.
Ryan, J.P., J.R. Green, E. Espinoza, and A.R. Hearn. 2017. Association of whale sharks (Rhincodon typus) with thermo-biological frontal systems of the eastern tropical Pacific. PLos ONE. 12(8). http://dx.doi.org/10.1371/journal. pone.0182599
Stoecker, D. and J. Pierson. 2019. Predation on protozoa: Its importance to zooplankton revisited. J. Plankton Res., 41(4): 367–373. https://doi.org/10.1093/plankt/fbz027
Syah, A.F., M. Musrifah, and H. Cahyono. 2018. Pemodelan daerah potensial kemunculan hiu paus (Rhincodon typus) menggunakan data penginderaan jauh di perairan probolinggo, jawa timur. J. Penelit. Perikan. Indones., 24(3): 209. https://doi.org/10.15578/jppi.24.3.2018.209-216
Turner, J.T. 2002. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat. Microb. Ecol., 27(1): 57–102. https://doi.org/10.3354/ame027057
Utojo, M.A. 2016. Struktur Komunitas Plankton pada Tambak Iintensif dan Tradisional Kabupaten Probolinggo, Provinsi Jawa Timur. Jurnal Ilmu dan Teknologi Kelautan Tropis, 8(1): 269.
van der Hoop, J. M., A.E. Nousek-McGregor, D.P. Nowacek, S.E. Parks, P. Tyack, and P.T. Madsen. 2019. Foraging rates of ram-filtering North Atlantic right whales. Funct. Ecol. 33: 1290-1306. https://doi.org/10.1111/1365-2435.13357
Wang, Y., W. Zhang, Y. Lin, L. Zheng, W. Cao, and J. Yang. 2014. Spatial and seasonal variations of large tintinnid ciliates in Shenhu Bay of China. Oceanol. Hydrobiol. Stud., 43(3): 292–302. https://doi.org/10.2478/s13545-014-0144-9
Wilson, S.G. 2002. A whale shark feeding in association with a school of giant herring at Ningaloo Reef, Western Australia. J. R. Soc. West. Aust., 85(1): 43–44. https://www.proquest.com/scholarly-journals/whale-shark-feeding-association-with-school-giant/docview/762205106/se-2?accountid=201395
Wilson, S.G., J.G. Taylor, and A.F. Pearce. 2001. The seasonal aggregation of whale sharks at Ningaloo Reef, Western Australia: Currents, migrations and the El Niño/ Southern Oscillation. Environ. Biol. Fishes., 61(1): 1–11. https://doi.org/10.1023/A:1011069914753
Witalis, B., A. Iglikowska, M. Ronowicz, A. Weydmann-Zwolicka, and P. Kukliński. 2024. The zooplankton community of Baltic Sea ports: diversity and seasonal dynamics. Oceanologia. https://doi.org/10.1016/j.oceano.2024.02.001.
Whitehead, D.A., D. Petatán Ramirez, D. Olivier, R. González-Armas, F. Pancaldi, and F. Galvan-Magana. 2019. Seasonal trends in whale shark Rhincodon typus sightings in an established tourism site in the Gulf of California, Mexico. Journal of Fish Biology, 95(3): 982–984. https://doi.org/10.1111/jfb.14106
Whitehead, D.A., U. Jakes-Cota, F. Pancaldi, F. Galván-Magaña, and R. González-Armas. 2020a. The influence of zooplankton communities on the feeding behavior of whale shark in Bahia de La Paz, Gulf of California. Revista mexicana de biodiversidad, 91: e913054. https://doi.org/10.22201/ib.20078706e.2020.91.3054.
Whitehead, D.A., U. Jakes-Cota, F. Galván-Magaña, F. Pancaldi, and R. González-Armas. 2020b. Composition and abundance of macro zooplankton in the coastal waters off the El Mogote Sandbar. Hidrobiológica. 30(1): 21-27. https://doi.org/10.24275/uam/izt/dcbs/hidro/2020v30n1/whitehead.
Xu, H., Y. Jiang, and G. Xu. 2016. Identifying functional species pool of planktonic protozoa for discriminating water quality status in marine ecosystems. Ecological indicators. 62: 306-311. https://doi.org/10.1016/j.ecolind.2015.10.068
Yap-dejeto, L., A. Cera, J. Labaja, J.D. Palermo, and A. Ponzo. 2013. Observations of Microzooplankton in the Vicinity of Whale Shark Rhincodon typus Aggregation Sites in Oslob , Cebu and Pintuyan , S . Leyte , Philippines. (December):61–77. https://www.lamave.org/s/Yap-dejetoetal2018ZoopandwhalesharksPJNS.pdf
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Ilmu dan Teknologi Kelautan Tropis i is an open-access journal, meaning that all content is freely available without charge to the user or their institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without needing to request prior permission from the publisher or the author.
All articles published by Jurnal Ilmu dan Teknologi Kelautan Tropis are licensed under the Creative Commons Attribution 4.0 International License. This allows for unrestricted use, distribution, and reproduction in any medium, provided proper credit is given to the original authors.
Authors submitting manuscripts should understand and agree that the copyright of published manuscripts is retained by the authors. Copyright encompasses the exclusive rights of authors to reproduce, distribute, and sell any part of the journal articles in all forms and media. Reproduction of any part of this journal, its storage in databases, and its transmission by any form or media is allowed without written permission from Jurnal Ilmu dan Teknologi Kelautan Tropis.