EVALUATION OF THE USE OF MALANG SAND AS A FILTER MATERIAL ON WATER QUALITY, PHYSIOLOGICAL RESPONSES AND PRODUCTION PERFORMANCE OF MUD CRAB Scylla serrata

  • Yuni Puji Hastuti Department of Aquaculture, Faculty of Fisheries and Marine Sciences- IPB University
  • Arul Tabah Prastomo Department of Aquaculture, Faculty of Fisheries and Marine Sciences- IPB University
  • Ridwan Affandi Department of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences- IPB University
  • Wildan Nurussalam Department of Aquaculture, Faculty of Fisheries and Marine Sciences- IPB University
  • Dudi Muhammad Wildan Department of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences- IPB University
  • Syamsul Bahri Agus Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences- IPB University
Keywords: Malang sand, filter, mud crab, production, resirculation

Abstract

Mud crab Scylla serrata is one of crustacean commodities with high economic value. One of the unsolved obstacles in mud crabs cultivation is crabs’ stress level caused by the declining water quality. The recirculating system is a method for maintaining water quality throughout the rearing period of culture crab. This system can use a variety of physical filter materials, such as zeolite, sand, and other materials. This study aimed to determine the amount of malang sand as a physical filter which positively affect the physiological responses and production performance of mud crabs. This research was carried out using a recirculating system with a completely randomized design conducted in five treatments with three replicates, i.e., malang sand with a weight of 0 kg (control), 5 kg, 10 kg, 15 kg, and 20 kg. The results proved that the best physiological response and production performance of mud crab was observed at malang sand treatment with a weight of 5 kg. This treatment showed specific growth rate, absolute growth rate for body weight, absolute growth rate for body length, and the survival rate of mud crabs with the highest value of 0.18±0.061%, 0.13±0.05 g/day, 0.0016±0.00006 cm/day, and 77.77%, respectively, yet it had the lowest feed conversion ratio of 3.76±004. In addition, the 5 kg treatment had water quality parameters in the tolerable ranges for mud crabs’ growth.

Downloads

Download data is not yet available.

References

Burden, G.D. 1988. Development and design of fluidized bed/upflow sand filter configuration for use in recirculating aquaculture systems. Dissertation. Louisiana State University. Louisiana. 140 p.

Food and Agriculture Organization (FAO). 2011. Mud crab aquaculture: a practical manual. Food and Agriculture Organization of United Nations. Rome.

Food and Agriculture Organization (FAO). 2013. The state of word fisheries and agriculture. Food and Agriculture Organization of United Nations. Rome.

Ministry of Marine Affairs and Fisheries (KKP). 2015. Jumlah produksi perikanan budidaya tambak menurut jenis ikan dan provinsi 2009-2014. KKP RI. Jakarta.

Djokosetiyanto, D., A. Sunarma, & Widanarni. 2006. Changes of ammonia, nitrite and nitrate at recirculation system of red tilapia (Oreochromis sp.) rearing. J. Akuakultur Indonesia, 5(1): 13–20. https://doi.org/10.19027/jai.5.13-20

Djunaedi, A. 2016. Pertumbuhan dan prosentase molting pada kepiting bakau (Scylla serrata Forsskäl, 1775) dengan pemberian stimulasi molting berbeda. J. Kelautan Tropis, 19(1): 29–36. https://doi.org/10.14710/jkt.v19i1.597

Eaton, D.A., Clebceri S.L., Greenberg E.A. 2005. Standard Methods for Examination of Water and Wastewater. 21st edition. Washington DC (US): American Public Health Association.

Effendie, M.I. 1979. Metode biologi perikanan. Yayasan Dewi Sri. Bogor. 112 p.

Faturrohman, K. 2017. Determination of optimum dissolved oxygen levels for the growth of mud crab seed Scylla serrata in recirculation systems. Master thesis. Institut Pertanian Bogor. Bogor. 41 p.

Goddard, S. 1996. Feed management in intensive aquaculture. Chapman & Hall. New York. 194 p.

Gunanti, M., Sunarti, J. Triastuti, & T. Juniastuti. 2009. The destruction and total haemocyte count of tiger shrimp (Penaeus monodon Fab.) that infected Zoothamnium penaei (zoothamniosis). Fisheries and Marine Scientific J., 1(1): 13-14. https://doi.org/10.20473/jipk.v1i1.11694

Handy, R.D. & M.H. Depledge. 1999. Physiological responses: their measurement and use as environmental biomarkers in ecotoxicology. Ecotoxicology, 8: 329-49. https://link.springer.com/article/10.1023/A:1008930404461

Hastuti, S., E. Supriyono, I. Mokoginta, & Subandiyono. 2007. Blood glucose response of giant gouramy (Osphronemus gaouramy, Lac.) to the stress of environmental temperature changes. J. Akuakultur Indonesia, 2(2): 73-77. https://doi.org/10.19027/jai.2.73-77

Hastuti, S., I. Mokoginta, D. Dana, & T. Sutardi. 2004. Stress resistance and immunity response of giant gourami (Osphronemus Gouramy, Lac.) fed on diet containing chromium-yeast. J. Ilmu-Ilmu Perairan dan Perikanan Indonesia, 11(1): 15-21.

Hastuti, Y.P., R. Affandi, M.D. Safrina, K. Faturrohman, & W Nurussalam. 2015. Optimum salinity for growth of mangrove crab Scylla serrata seed in recirculation systems. J. Akuakultur Indonesia, 14(1): 50–57. https://doi.org/10.19027/jai.14.50-57

Hastuti, Y.P., H. Nadeak, R. Affandi, & K. Faturrohman. 2016. Optimum pH determination for mangrove crab Scylla serrata growth in controlled containers. J. Akuakultur Indonesia, 15(2): 171–179. https://doi.org/10.19027/jai.15.2.171-179

Herlinah, Sulaeman, & A. Tenriulo. 2010. Pembesaran kepiting bakau (Scylla serrata) di tambak dengan pemberian pakan berbeda. Prosiding Forum Inovasi Teknologi Akuakultur 2010: 169-174 pp.

Kanazawa, A., L. Chim, & L. Laubier. 1988. Tissue uptake of radioactive cholesterol in the prawn Penaeus japonicus Bate during induced ovarian maturation. Aquatic Living Resources, 1(2): 85–91. https://doi.org/10.1051/alr:1988010

Liao, I.C. & H.J. Huang. 1975. Studies on the respiration of economic prawns in Taiwan, I. Oxygen consumption and lethal dissolved oxygen of egg up to young prawn of Penaeus monodon Fabricius. J. of Fisheries Society of Taiwan, 4 (1): 33-50.

Millaty, R. 2014. Optimum temperature determination for survival rate and growth rate of mud crab Scylla serrata (Forskal) with resirculation system. Undergraduate thesis. Institut Pertanian Bogor. Bogor. 25 p.

Monoarfa, S., Syamsuddin, & S.N. Hamzah. 2013. Analisis parameter dinamika populasi kepiting bakau (Scylla serrata) di Kecamatan Kwandang, Kabupaten Gorontalo Utara. Fisheries and Marine Scientific J., 1(1): 31-36. https://doi.org/10.37905/.v1i1.1214

Oliveira, F.F.D., R.G. Moreira, & R.P. Schneider. 2019. Evidence of improved water quality and biofilm control by slow sand filters in aquaculture-a case study. Aquaculture Engineering, 85: 80-89. https://doi.org/10.1016/J.AQUAENG.2019.03.003

Qyli, M., V. Aliko, & C. Faggio. 2020. Physiological and biochemical responses of Mediterranean green crab, Carcinus aestuarii to different environmental stressor: Evaluation of hemocyte toxicity and its possible effects on immune response. Comparative Biochemistry and Physiology part C: Toxicology and Pharmacology, 231: 108739. https://doi.org/10.1016/j.cbpc.2020.108739

Palmer, P.J. 2010. Polychaeta assisted sand filters. Aquaculture, 306: 369-377. https://doi.org/10.1016/j.aquaculture.2010.06.011

Pedapoli, S. & K.R. Ramudu. 2014. Effect of water quality parameters on growth and survivability of mud crab (Scylla tranquebarica) in grow out culture at Kakinada coast, Andhra Pradesh. International J. of Fisheries and Aquatic Studies 2(2): 163-166. https://www.fisheriesjournal.com/vol2issue2/Pdf/36.1.pdf

Pranoto, S.H. 2007. Isolasi dan seleksi bakteri nitrifikasi dan denitrifikasi sebagai agen bioremediasi pada media pemeliharaan udang vaname (Litopenaeus vannamei). Undergraduate thesis. Institut Pertanian Bogor, Bogor. 64 p.

Prodjodiharjo, S. 2002. Pengelolaan daging. Direktorat Jenderal Peternakan Departemen Pertanian. Jakarta.

Sahu, S., R. Chawla R, & B. Uppai. 2005. Comparison of two methods of estimation of low density lipoprotein cholesterol, the direct versus friedewald estimation. Indian J. of Clinical Biochemistry, 20(2): 54-61. https://doi.org/10.1007/BF02867401

Sampaio, G.R., D.H.M. Bastos, R.A.M. Soares, Y.S. Queiroz, & E.A.F.S. Torres. 2006. Fatty acid and cholesterol oxidation in salted and dried shrimp. Food Chemistry, 95(2): 344–351. https://doi.org/10.1016/j.foodchem.2005.02.030

Shelley C. & A. Lovatelli. 2011. Mud crab aquaculture “A practical manual”. FAO Fisheries and Aquaculture Department. Rome. 100 p.

Verghese, B., E.V. Radhakrishnan, & A. Padhi. 2007. Effect of environmental parameters on immune response of the Indian spiny lobster, Panulirus homarus (Linnaeus, 1758). Fish and Shellfish Immunology, 23(5): 928-936. https://doi.org/10.1016/j.fsi.2007.01.021

Wedemeyer, G.A. & I. Yasutake. 1977. Physiology of fish in intensive culture system. Chapman & Hall. New York. 226 p.

Zonneveld, N., E.A. Huisman, & J.H. Boon. 1991. Prinsip-prinsip budidaya ikan. PT Gramedia Pustaka Utama. Jakarta. 318 p. significant differences among treatments (P<0.05).

Published
2020-12-31
How to Cite
Hastuti, Y. P., Prastomo, A. T., Affandi, R., Nurussalam, W., Wildan, D. M., & Agus, S. B. (2020). EVALUATION OF THE USE OF MALANG SAND AS A FILTER MATERIAL ON WATER QUALITY, PHYSIOLOGICAL RESPONSES AND PRODUCTION PERFORMANCE OF MUD CRAB Scylla serrata. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 12(3), 833-848. https://doi.org/10.29244/jitkt.v12i3.32939