ANALYSIS OF BENTHIC HABITAT CHANGE BY USING HIGH RESOLUTION SATELLITE IMAGERY IN KARANG LEBAR, KEPULAUAN SERIBU
Abstract
The need for data and information about benthic habitat is very necessary to maintain and conserve the ecosystems that exist in the waters. Damage to benthic habitats can occur due to anthropogenic activities and natural disasters that will impact on the surrounding biota and ecosystem, therefore to know and monitor the condition of waters and shallow water habitats it is necessary to do mapping. This study aims to detect the change of benthic habitats in Karang Lebar, Kepulauan Seribu. This study utilized high resolution multispectral imagery QuickBird (2008) and WordView-2 (2018) to detect changes in the distribution and the area of the benthic habitat coverage at the study site. The classification of multispectral imagery was carried out with two approaches, namely the application of the Support Vector Machine (SVM) algorithm and Depth Invariant Index (DII) transformation on both satellite imageries. The number of benthic habitat classes produced was five classes, namely live coral, dead coral, seagrass beds, sand, and rubble. The results of the analysis showed an overall accuracy of 58.18% and 70.9% in the classification with multispectral input bands for the 2008 and 2018 imagery, and 60% and 80% for the DII transformation on 2008 and 2018 imageries respectively. The results of change detection showed the rubble class to sand had the largest area of 81.46 ha.
References
Anderson, G.P., G.W. Felde, M.L. Hoke, A.J. Ratkowski, T.W. Cooley, J.H. Chetwynd, J. Gardner, S.M. Adler-Golden, M.W. Matthew, & A. Berk. 2002. Modtran4-based atmospheric correction algorithm: flaash (fast line-of-sight atmospheric analysis of spectral hypercubes). In, Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery VIII. International Society for Optics and Photonics, 4725: 65-71.
Aziizah, N.N., V.P. Siregar, & S.B. Agus. 2017. Penerapan algoritma spectral angle mapper (sam) untuk klasifikasi lamun menggunakan citra satelit worldview-2. J. Penginderaan Jauh dan Pengolahan Data Citra Digital, 13(2): 61-72. http://doi.org/10.30536/j.pjpdcd.2016.v13.a2205
Congalton, R.G. & K. Green. 2019. Assessing the accuracy of remotely sensed data: principles and practices (Third Edition). CRC press Taylor & Francis Group. France. 159 p.
Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M.A. Mateo, E.T. Apostolaki, G.A. Kendrick, D. Krause-Jensen, & K.J. Mcglathery. 2012. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 5: 505-509. https://doi.org/10.1038/ngeo1477
Green, E.P., P.J. Mumby, A.J. Edwards, & C.D. Clark. 2000. Remote sensing: handbook for tropical coastal management. United Nations Educational, Scientific and Cultural Organization (UNESCO). Paris. 316 p.
Hernández-Cruz, L.R., S.J. Purkis, & B.M. Riegl. 2006. Documenting decadal spatial changes in seagrass and acropora palmata cover by aerial photography analysis In Vieques, Puerto Rico: 1937–2000. Bulletin of Marine Science, 79(2): 401-414.
Holden, H., E. Ledrew, C. Derksen, & M. Wilder. 2000. Coral reef ecosystem change detection based on spatial autocorrelation of multispectral satellite data. Proceedings of the second international asia pacific symposium on remote sensing of the atmosphere, environment, and space, October 9-12, 2000, Sendai, Japan. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA. 5524. Asian J. Geoinform, 1(3): 45-51.
Jhonnerie, R. 2015. Random forest classification for mangrove land cover mapping using Landsat 5 TM and ALOS PALSAR imageries. Procedia Environ. Sci., 24: 215-221. https://doi.org/10.1016/j.proenv.2015.03.028
Khrisnamurti, K.H. Utami, & R. Darmawan. 2017. Dampak pariwisata terhadap lingkungan di Pulau Tidung Kepulauan Seribu. Kajian, 21: 257-273. https://doi.org/10.22212/kajian.v21i3.779
Laffoley, D. & G.D. Grimsditch. 2009. The management of natural coastal carbon sinks. IUCN Press. Gland Switzerland. 53 p.
Lyzenga, D.R. 1981. Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and landsat data. International J. of Remote Sensing, 2: 71-82. https://doi.org/10.1080/01431168108948342
Manessa, M.D.M., A. Kanno, M. Sekine, E.E. Ampou, N. Widagti, & A.R. As-Syakur. 2014. Shallow-water benthic identification using multispectral satellite imagery: investigation on the effects of improving noise correction method and spectral cover. Remote Sensing, 6: 4454-4472. https://doi.org/10.3390/rs6054454
Mumby, P.J. 2006. Connectivity of reef fish between mangroves and coral reefs: algorithms for the design of marine reserves at seascape scales. Biological Conservation, 128: 215-222. https://doi.org/10.1016/j.biocon.2005.09.042
Pahlevan, N., M. Valadanzouj, & A. Alimohammadi. 2006. A quantitative comparison to water column correction techniques for benthic mapping using high spatial resolution data. In, Proceedings of Isprs Commission VII Mid-Term Symposium on Remote Sensing: From Pixels to Processes, Enschede, The Netherlands: Citeseer, Mei 2006. 21-28 pp.
Phinn, S.R., C.M. Roelfsema, & P.J. Mumby. 2012. Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. International J. of Remote Sensing, 33: 3768-3797. https://doi.org/10.1080/01431161.2011.633122
Prabowo, N.W., V.P. Siregar, & S.B. Agus. 2018. Classification of benthic habitat based on object with support vector machines and decision tree algorithm using spot-7 multispectral imagery in Harapan and Kelapa Island. J. Ilmu dan Teknologi Kelautan Tropis, 10(1): 123-134. https://doi.org/10.29244/jitkt.v10i1.21670
Roelfsema, C.M., M. Lyons, E.M. Kovacs, P. Maxwell, M.I. Saunders, J. Samper-Villarreal, & S.R. Phinn. 2014. Multi-temporal mapping of seagrass cover, species and biomass: a semi-automated object based image analysis approach. Remote Sensing of Environment, 150: 172-187. https://doi.org/10.1016/j.rse.2014.05.001
Selamat, M.B., I. Jaya, V.P. Siregar, & T. Hestirianoto. 2012a. Akurasi tematik peta substrat dasar dari citra quickbird (studi kasus gusung karang lebar, Kepulauan Seribu, jakarta)(thematic accuracy of bottom substrate map from quickbrid imagery (Case Study: Gusung Karang Lebar, Kepulauan Seribu, Jakarta)). Ilmu Kelautan: Indonesian J. of Marine Sciences, 17: 132-140. https://doi.org/10.14710/ik.ijms.17.3.132-140
Selamat, M.B., I. Jaya, V.P. Siregar, & T. Hestirianoto. 2012b. Aplikasi citra quickbird untuk pemetaan 3d substrat dasar di Gusung Karang. J. Ilmiah Geomatika, 18(2): 95-106.
Setyawan, I.E., V.P. Siregar, G.H. Pramono, & D.M. Yuwono. 2014. Pemetaan profil habitat dasar perairan dangkal berdasarkan bentuk topografi: studi kasus Pulau Panggang, Kepulauan Seribu Jakarta. Majalah Ilmiah Globe, 16(2): 125-132.
Siregar, V. 2010. Pemetaan substrat dasar perairan dangkal karang congkak dan lebar Kepulauan Seribu menggunakan citra satelit quickbird. J. Ilmu dan Teknologi Kelautan Tropis, 2(1): 19-30. https://doi.org/10.29244/jitkt.v2i1.7860
Vapnik, V. 1982. Estimation of dependencies based on empirical data, Translated By S. Kotz. In: New York: Springer-Verlag. 124 p.
Wicaksono, P. & M. Hafizt. 2013. Mapping seagrass from space: addressing the complexity of seagrass lai mapping. European J. of Remote Sensing, 46: 18-39. https://doi.org/10.5721/EuJRS20134602
Kovacs, E., C. Roelfsema, M. Lyons, S. Zhao, & S. Phinn. 2018. Seagrass habitat mapping: how do Landsat 8 OLI, Sentinel-2, ZY-3A, and Worldview-3 perform?. Remote Sensing Letters, 9: 686-695. https://doi.org/10.1080/2150704X.2018.1468101.
Urbański, J., A. Mazur, & U. Janas. 2009. Object-oriented classification of QuickBird data for mapping seagrass spatial structure. Oceanological and Hydrobiological Studies, 38(1): 27-43. https://doi.org/10.2478/v10009-009-0013-9
Authors
The author submitting the manuscript must understand and agree that the copyright of the article manuscript must be submitted/transferred to the Jurnal Ilmu dan Teknologi Kelautan Tropis. This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA) International License in which the Author and Reader can copy and redistribute the material in any media or format, and remix, modify and build material for any purpose, but they must provide appropriate credit (citing articles or content), provide a link to the license, and indicate whether there is a change. If you mix, change, or create material, you must distribute your contribution under the same license as the original.