THE EFFECT OF ACIDIFICATION ON GROWTH AND PHOTOSYNTHESIS RATE OF SEAGRASS Thalassia hemprichii (Ehrenberg.) Ascherson
Abstract
Seagrass is a water plant that has flowers and ability to adapt to live and grow in the sea like a terrestrial plant. The survival of seagrass is greatly influenced by physical and chemical parameters of waters, such as pH, temperature, and salinity. The Intergovernmental Panel on Climate Change (IPCC) report by the end of 21st century, CO2 in the atmosphere has doubled along with the industrial development. The increase in CO2 in the atmosphere causes ocean acidification, it can change the chemical structure and decrease the pH of sea water. The low pH of sea water influences plant phisiology such as the inhibition of photosynthesis and growth. The purpose of this study is to examine the effect of pH on the growth and photosynthesis rate of seagrass Thalassia hemprichii. The study used Completely Randomized Design with 3 treatments control (8.10-8.50), medium pH (7.76-8.00) and low pH (7.50-7.75) in 5 replicates. The results showed that growth rate, photosynthetic rate and chlorophyll content has a bigger value on control treatment than the low pH treatment. The ANOVA test results were not significant for all treatment variables and had a negative impact on the survival of seagrass.
References
Ariyati R.W., L. Sya’rani, & E. Arini. 2007. Analisis kesesuaian perairan Pulau Karimunjawa dan Pulau Kemujan sebagai lahan budidaya rumput laut menggunakan sistem informasi geografis. J. Pasir Laut. 3(1): 27-45. DOI?
Beer, S., M. Bjork, F. Hellblom, & L. Axelsson. 2002. Inorganic carbon utilization in marine angiosperms (seagrasses). Funct. Plant. Biol., 29(3): 349-354. http://doi.org/10.1071/PP01185
Brothers, C.J., J. Harianto, J.B. McClintock, & M. Byrne. 2016. Sea urchins in a high CO2 world: the influence of acclimation on the immune response to ocean warming and acidification. Proceedings of the Royal Society, 283(1837): 1-10. http://doi.org/10.1098/rspb.2016.1501
Brouns, J.J.W.M. 1985. A comparison of the annual production and biomass in three monospecific stands of the seagrass Thalassia hemprichii (Ehrenb.) aschers. Aquat. Bot., 23(2): 149-175. http://doi.org/10.1016/0304-3770(85)90062-2
Caldeira, K. & M.E. Wickett. 2003. Oceanography: anthropogenic carbon and ocean pH. Nature, 425: 365. http://doi.org/10.1038/425365a
Campbell, J.E. & J.W. Fouqurean. 2013. Effects of in situ CO2 enrichment on the structural and chemical characteristic of the seagrass Thalassia testudinum. Mar. Biol., 160: 1465-1475. http://doi.org/10.1007/s00227-013-2199-3
Chefaoui, R.M., C.M. Duarte, & E.A. Serrano. 2018. Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Global Change Biology, 24(10): 4919-4928. http://doi.org/10.1111/gcb.14401
Chen, G.T. & F.J. Millero. 1979. Gradual increase of oceanic CO2. Nature, 277: 205-206. http://doi.org/10.1038/277205a0
Christianen, M.J.A., J. van Belzen, P.M.J. Herman, M.M. van Katwijk, L.P.M. Lamers, P.J.M. van Leent, & T.J. Bouma. 2013. Low-canopy seagrass beds still provide important coastal protection services. PLoS ONE, 8(5): e62413. https://doi.org/10.1371/journal.pone.0062413
Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quéré, R.B. Myneni, S. Piao, & P. Thornton, 2014: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 465-570 pp. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter06_FINAL.pdf
Clores, M.A. & J.A.V.I. Carandang. 2013. Chlorophyll content, productivity and biomass allocations of seagrass in Talim Bay, Lian, Batangas, Philippines. Proceedings of the International Academy of Ecology and Environmental Sciences, 3(3): 247-256.
Duarte, B., T. Couto, J.C. Marques, & I. Cacador. 2012. Scirpus maritimus leaf pigment profile and photo-chemistry during senescene: implications on carbon sequestration. Plant Phys. Biochem., 57: 238-244. http://doi.org/10.1016/j.plaphy.2012.05.019
Durako, M.J. & W.M. Sackett. 1993. Effects of CO2 on the carbon isotropic composition of the seagrass Thalassia testudinum banks ex koning (Hydrocharitaceae). J. Exp. Mar. Biol. Ecol., 169: 167-180. http://doi.org/10.1016/0022-0981(93)90192-Q
Dwidjoseputro D. 1994. Pengantar Fisiologi Tumbuhan. Jakarta, Indonesia: Gramedia Pustaka Utama. 124 p.
Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, & F.J. Millero. 2004. Impact of antrophogenic CO2 on the CaCO3 system in the oceans. Science, 305(2): 362-366. http://doi.org/10.1126/science.1097329
Granger, S. & H. lizumi. 2001. Water quality measurement methods for seagrass habitat. In: Short FT, Coles RG, editor. Global Seagrass Research Methods, 2001: 393-406. https://doi.org/10.1016/B978-044450891-1/50021-9
Guinotte, J.M. & V.J. Fabry. 2008. Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy Sciences, 1134(1): 320-342. http://doi.org/10.1196/annals.1439.013
Intergovernmental Panel on Climate Change (IPCC). 2007. Climate change 2007: Synthesis Report Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp. https://www.ipcc.ch/report/ar4/syr/
Kawaroe, M., A.H. Nugraha, & Juraij. 2016. Ekosistem padang lamun. Bogor, Indonesia: IPB Press. 19 p.
Koch, M., G. Bowes, C. Ross, & X.H. Zhang. 2013. Climate change and ocean acidification effects on seagrasses and marine microalgae. Global Change Biology, 19(1): 103-132. http://doi.org/10.1111/j.1365-2486.2012.02791.x
Kondoy, K.I.F., E.Y. Herawati, M. Mahmudi, & R. Azrianingsih. 2014. CO2 application as growth stimulator of seagrass, Thalassia hemprichii under laboratory conditions. J. Bio. Env. Sci, 5(6): 153-159. https://innspub.net/volume-5-number-6-december-2014-jbes/
Kuo, Y.M., & H.J. Lin. 2010. Dynamic factor analysis of long-term growth trends of the intertidal seagrass Thalassia hemprichii in Southern Taiwan. Estuar, Coast. Shelf. Sci., 86(2): 225-236. http://doi.org/10.1016/j.ecss.2009.11.017
Kurihara, H., S. Shimode, & Y. Shirayama. 2004. Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. J. of Oceanography, 60: 743-750. https://doi.org/10.1007/s10872-004-5766-x
Lee, K.S., S.R. Park, & Y.K. Kim. 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrass: A review. J. Exp. Mar. Biol. Ecol., 350(1-2): 144-175. http://doi.org/10.1016/j.jembe.2007.06.016
Marin-Guirao, L., J.M. Sandova-Gil, J. Bernardeau-Esteller, J.M. Ruiz, & J.L. Sanchez-Lizaso. 2013. Responses of the Mediterranean seagrass Posidonia oceanica to hypersaline stress duration and recovery. Mar. Environ. Res., 84: 60-75. http://doi.org/10.1016/j.marenvres.2012.12.001
Mukai, H. 1993. Biogeography of the tropical seagrasses in the western Pacific. Aust. J. Mar. Freshwater Res., 44(1): 1-17. http://doi.org/10.1071/MF9930001
Oreska, M.P.J., McGlathery, K.J., & J.H. Porter. 2017. Seagrass blue carbon spatial patterns at the meadow-scale. PloS ONE, 12(4): e0176630. https://doi.org/10.1371/journal.pone.0176630
Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R.M. Key, K. Lindsay, Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R.G. Najjar, G.K. Plattner, K.R. Rodgers, C.L. Sabine, J.L. Sarmiento, R. Schlitzer, R.D. Slater, I.J. Totterdel, M.F. Weiring, Y. Yamanaka, & A. Yool. 2005. Anthropogenic ocean acidification over twenty-first century and its impact on calcifying organisms. Nature, 437(7059): 681-686. http://doi.org/10.1038/nature04095
Ow, Y.X., C.J. Collier, & S. Uthicke. 2015. Responses of three tropical seagrass species to CO2 enrichment. Mar. Biol., 162(5): 1005-1017. http://doi.org/10.1007/s00227-015-2644-6
Revelle, R. & H.E. Suess. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus, 9(1): 18-27. https://doi.org/10.1111/j.2153-3490.1957.tb01849.x
Riniatsih, I. & H. Endrawati. 2013. Pertumbuhan lamun hasil transplantasi jenis Cymodocea rotundata di padang lamun Teluk Awur Jepara. Bul. Osea. Mar., 2: 34-40. http://doi.org/10.14710/buloma.v2i1.6924
Short, F.T, & C.M. Duarte. 2001. Methods for the measurement of seagrass and growth production. In: Short FT, Coles RG, editor. Global Seagrass Research Methods. Elsevier Science. 8: 155-182. http://doi.org/10.1016/B978-044450891-1/50009-8
Soleh, M.A. 2017. Faktor yang mendasari overestimasi pengukuran gas exchange tanaman dengan menggunakan Photosynthesis Analyzer Li-6400. J. Kultivasi, 16(1): 255-259. http://doi.org/10.24198/kltv.v16i1.11546
Staehr, P.A. & J. Borum. 2011. Seasonal acclimation in metabolism reduces light requirements of eelgrass (Zostera marina). J. Exp. Mar. Biol. Ecol., 407(2): 139-146. http://doi.org/10.1016/j.jembe.2011.05.031
Suliyanto. 2012. Analisis statistik pen-dekatan praktis dengan Microsoft Excel (Statistical analysis of practical approaches with Microsoft Excel). Yogyakarta, Indonesia: Andi offset. 232 p.
Susana, T. 1988. Karbon dioksida. Oseana, 3(1): 1-11.
Touchette, B.W. & J.M. Burkholder. 2000. Overview of the physiological ecology of carbon metabolism in seagrasses. J. Exp. Mar. Biol. Ecol., 250(1-2): 169-205. http://doi.org/10.1016/s0022-0981(00)00196-9
Turley, C. 2008. Impacts of changing ocean chemistry in a high CO2 world. Min Mag, 72: 359-362. http://doi.org/10.1180/minmag.2008.072.1.359
Uku, J., S. Beer, & M. Bjork. 2005. Buffer sensivity photosynthetic carbon utilisation in eight tropical seagrasess. Mar. Biol., 147: 1085-1090. http://doi.org/10.1007/s00227-005-0019-0
Wiginton, J.R. & C. McMillan. 1979. Chlorophyll composition under controlled light conditions as related to the distribution of seagrasses in Texas and the US Virgin Islands. Aquatic Botany, 6: 171-184. http://doi.org/10.1016/0304-3770(79)90060-3
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The author submitting the manuscript must understand and agree that the copyright of the article manuscript must be submitted/transferred to the Jurnal Ilmu dan Teknologi Kelautan Tropis. This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA) International License in which the Author and Reader can copy and redistribute the material in any media or format, and remix, modify and build material for any purpose, but they must provide appropriate credit (citing articles or content), provide a link to the license, and indicate whether there is a change. If you mix, change, or create material, you must distribute your contribution under the same license as the original.