THE EFFECT OF pH CONDITIONS ON PHYSIOLOGICAL RESPONSE OF SEAGRASS LEAVES Cymodocea rotundata
Abstract
Increased carbon dioxide (CO2) in the atmosphere causes ocean acidification. Acidification becomes a threat to seagrass. Nowadays, one of the challenges that must be faced is to predict the long-term impact of acidification on the physiology of seagrass. This research aims to analyze seagrass Cymodocea rotundata leave physiology responses to pH that consists of chlorophyll-a and b content, photosynthesis rate, and growth rate of seagrass leaf. This research was conducted on September – December 2017 in Marine Habitat Laboratory, Department of Marine Science and Technology, Bogor Agricultural University. The method used a completed randomized design with five repetitions. pH treatment used in this research is low pH (7.55), medium pH (7.78), and control (8.20). The setting of pH value was done by adding CO32-. Chlorophyll-a and b contents, photosynthesis rate, and growth rate on C. rotundata leaf are higher on control pH treatment than medium pH (7.78) and low pH (7.55). ANOVA test shows that only chlorophyll-a is significantly different. The difference pH affects the chlorophyll content of a and b, photosynthesis rate, and leaf growth rate. The low pH of seawater has been shown to inhibit the physiological activity of C. rotundata leaves.
References
American Public Health Association (APHA). 2012. Standar method for the examination of water and waste wayer. 22 Edition. Environmental Protection Agency Press. Washington DC. 1360 p.
Azkab, M.H. & W. Kiswara. 1994. Struktur komunitas biologi padang lamun di pantai selatan lombok dan kondisi lingkungannya. Pusat Penelitian dan Pengembangan Oseanologi LIPI. Jakarta. 124 p.
Bastyan, G.R. & M.L. Cambridge. 2008. Transplantation as a method for restoring the seagrass Posidonia australis. Estuarine, Coastal and Shelf Science, 79: 289–299. https://doi.org/10.1016/j.ecss.2008.04.012
Borum, J., O. Pederson, L. Kotulo, M.W. Fraser, J. Statton, T.D. Colmer, & G.A. Kendrick. 2016. Photosynthetic response to globally increasing CO2 of co-occuring temperate seagrass species. Plant, Cell and Environment, 39: 1240-1250. https://doi.org/10.1111/pce.12658
Canadell, J.P., C. Le Quere, M.R. Raupach, C.B. Field, E.T. Buitenhuis, P. Ciais, T.J. Conway, N.P. Gillett, R.A. Houghton, & G. Marland. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci, 104(47): 18866-18870. https://doi.org/10.1073/pnas.0702737104
Duarte, C.M., I.E. Hendriks, T.S. Moore, Y.S. Olsen, A. Steckbauer, L. Ramajo, J. Carstensen, J.A. Trotter, & M. Mcculloch. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuarine and Coastal, 36: 221–236. https://doi.org/10.1007/s12237-013-9594-3
Dunton, K.H. 1994. Seasonal growth and biomass of the subtropical seagrass Halodule wrightii in relation to continuous measurements of underwater irradiance. Marine Biology, 120: 479-489. https://doi.org/10.1007/BF00680223
Effendi, H. 2003. Telaah Kualitas Air Bagi Pengelolaan Sumberdaya dan Lingkungan Perairan. Kanisius. Yogyakarta. 256 p.
Fabricius, K.E., C. Langdon, S. Uthicke, C. Humphrey, S. Noonan, G. De'ath, R. Okazaki, N. Muehllehner, M.S. Glas, & J.M. Lough. 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change, 1: 165-169. https://doi.org/10.1038/nclimate1122
Fabry, V.J., J.B. McClintock, J.T. Mathis, & J.M. Grebmeier. 2009. Ocean acidification at high latitudes: The Bellwether. Oceanography, 22(4): 160–171. https://doi.org/10.5670/oceanog.2009.105
Fennema. 1996. Food Chemitry 3 th edition. Marcel Dekker. Inc New York. 1067 p.
Fourqurean, J.W., C.M. Duarte, H. Kennedy, & M. Marbà. 2012. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 1: 1-5. https://doi.org/10.1038/ngeo1477
Granger, S. & H. Izumi. 2002. Water quality measurement methods for seagrass habitats. Elsevier Science, 20: 393-405. https://doi.org/10.1016/B978-044450891-1/50021-9
Gullstrom M., L.D. Lyimo, M. Dahl, G.S. Samuelsson, M. Eggertsen, E. Enderberg, L.M. Rasmusson, H.W. Linderholm, A. Knudby, S. Bandeira, L.M Nordlund, & M. Bjork. 2017. Blue Carbon Storage in Tropical Seagrass Meadows Relates to Carbonate Stock Dynamics, Plant–Sediment Processes, and Landscape Context: Insights from the Western Indian Ocean. Springer Nature, 21: 551-566. https://doi.org/10.1007/s10021-017-0170-8
Hein, M. & K. Sand-Jansen. 1997. CO2 Increases oceanic primary production. Nature, 388: 526-527. https://doi.org/10.1038/41457
Intergovernmental Panel on Climate Change (IPCC). 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to The Fifth Assessment Report of The Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge. 1585 p.
Intergovernmental Panel on Climate Change (IPCC). 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge. 1434 p.
Knutzen, J. 1981. Effects of decreased pH on marine organisms. Marine Pollution Bulletin, 12: 25–29. https://doi.org/10.1016/0025-326X(81)90136-3
Lambers, H, F.S. Chapin, & T.L. Pons. 1998. Plant physiological ecology. Springer. New York. 605 p.
Lee, K.S. & K.H. Dunton. 2000. Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrass Thalassia testudinum. Marine Ecology Progress, 196: 39–48. https://doi.org/10.3354/meps196039
Mackereth, F.J.H., J. Heron, & J.F. Tailing. 1989. Water analysis. freshwater biological association. Liverpool University Press. Liverpool. 456-456 p.
Nontji, A. 1993. Laut nusantara. Djambatan. Jakarta. 368 p.
Ow, Y.X., C.J. Collier, & S. Uthicke. 2015. Response of three tropical seagrass species to CO2 enrichment. Marine Biology, 162: 1005-1007. https://doi.org/10.1007/s00227-015-2644-6
Riniatsih I. & H. Endrawati. 2013. Pertumbuhan lamun hasil transplantasi jenis Cymodocea rotundata di padang lamun teluk awur jepara. Buletin Oseanografi Marina, 2: 34-40. https://doi.org/10.14710/buloma.v2i1.6924
Sarmiento, J.L. & N. Gruber. 2006. Ocean biogeochemical dynamics. Princeton University Press. New Jersey. 503 p.
Short, F.T. & C.M. Duarte. 2001. Methods for the measurement of seagrass and growth production. di dalam: Short FT, Coles RG, editor. Global seagrass research methods. Elsevier Science, 8: 155-182. https://doi.org/10.1016/B978-044450891-1/50009-8
Short, F.T., T. Carruters, W. Dennison, & M. Waycott. 2007. Global seagrass distribution and diversity: a bioregion model. J. of Experimental Marine Biology and Ecology, 350: 3–20. https://doi.org/10.1016/j.jembe.2007.06.012
Soleh, M.A. 2017. Overestimation measurement of gas exchange by using Portable Photosynthesis Analyzer LI-6400. J. Kultivasi, 16(1): 255-259. https://doi.org/10.24198/kltv.v16i1.11546
Suliyanto. 2012. Analisis statistik pendekatan praktis dengan Microsoft excel. Andi offset. Yogyakarta. 232 p.
Supriharyono. 2009. Konservasi ekosistem sumberdaya hayati. Pustaka Pelajar. Yogyakarta. 428 p.
Vonk, J.A., M.J.A. Christianen, J. Stapel, & K.R. O’Brien. 2015. What lies beneath: why knowledge of belowground biomass dynamic is crusial to effective seagrass management. Ecological Indicators, 57: 259-267. https://doi.org/10.1016/j.ecolind.2015.05.008
Waldbusser, G.G., E.P. Voigt, H. Bergschneider, M.A. Green, & R.I. Newell. 2011. Biocalcification in the eastern oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH. Estuaries and Coasts, 34(2): 221–231. http://doi.org/10.1007/s12237-010-9307-0
Widdicombe, S. & J.I. Spicer. 2008. Predicting the impact of ocean acidification on benthic diversity. What can animal physiology tell us?, J. Experimental Marine Biolology Ecology, 366: 187–197. https://doi.org/10.1016/j.jembe.2008.07.024
Zeebe, R.E. & D. Wolf-Gladrow. 2001. CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier Science. Netherlands. 360 p.
Zimmerman, R.C., V.J. Hill, M. Jinuntuya, B. Celebi, D. Ruble, M. Smith, T. Cedeno, & W.M. Swingle. 2017. Experimental impacts of climate warming and ocean carbonation on eelgrass Zoostera marina. Marine Ecology Progress Series, 566: 1-15. https://doi.org/10.3354/meps12051
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Ilmu dan Teknologi Kelautan Tropis i is an open-access journal, meaning that all content is freely available without charge to the user or their institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without needing to request prior permission from the publisher or the author.
All articles published by Jurnal Ilmu dan Teknologi Kelautan Tropis are licensed under the Creative Commons Attribution 4.0 International License. This allows for unrestricted use, distribution, and reproduction in any medium, provided proper credit is given to the original authors.
Authors submitting manuscripts should understand and agree that the copyright of published manuscripts is retained by the authors. Copyright encompasses the exclusive rights of authors to reproduce, distribute, and sell any part of the journal articles in all forms and media. Reproduction of any part of this journal, its storage in databases, and its transmission by any form or media is allowed without written permission from Jurnal Ilmu dan Teknologi Kelautan Tropis.