Penetrasi dan Sorptivitas Klorida Beton Mutu Tinggi Memadat Mandiri dengan Variasi Substitusi Metakaolin

  • Delista Putri Deni Program Studi D3 Teknik Sipil, Sekolah Vokasi, Universitas Sebelas Maret
  • 'Ilma Alfianarrochmah Program Studi D3 Teknik Sipil, Sekolah Vokasi, Universitas Sebelas Maret
  • Oktavia Kurnianingsih Program Studi D3 Teknik Sipil, Sekolah Vokasi, Universitas Sebelas Maret
Keywords: Beton Mutu Tinggi Memadat Mandiri, Klorida, Metakaolin, Penetrasi, Sorptivitas

Abstract

Struktur beton bertulang seringkali terekspos pada lingkungan yang mengandung zat-zat perusak seperti ion klorida. Penetrasi ion klorida akan merusak lapisan pasif pada beton dan mengakibatkan terjadinya korosi, sehingga penggunaan beton berkualitas baik sangat dibutuhkan. Pada penelitian ini, beton mutu tinggi memadat mandiri dengan variasi substitusi metakaolin terhadap berat semen sebesar 0% (kontrol); 10%; 12,5%; 15%; 17,5 %; dan 20% digunakan sebagai solusi. Tujuan penelitian adalah mengidentifikasi pengaruh substitusi metakaolin dan kadar optimumnya untuk meningkatkan resistensi beton terhadap penetrasi klorida. Penelitian ini menggunakan metode eksperimental dengan benda uji silinder beton berdiameter 7,5 cm dan tinggi 15 cm. Pengujian kedalaman penetrasi klorida menggunakan metode uji penetrasi klorida laboratorium dipercepat, benda uji dipaparkan pada lingkungan klorida dengan konsentrasi 2% dengan variasi waktu pemaparan 15, 37, dan 51 hari dan kemudian dianalisis menggunakan metode AgNO3 colorimetric (Fu et al., 2022). Pengujian sorptivitas klorida dilakukan berdasarkan ASTM C.1585 (ASTM International, 2013) menggunakan variasi waktu 30, 90, dan 1440 menit. Dari hasil penelitian, didapat bahwa substitusi metakaolin 15% merupakan kadar optimum untuk menurunkan penetrasi dan sorptivitas klorida pada beton sebagai kontribusi dari reaksi pozzolaniknya. Penelitian diharapkan dapat bermanfaat sebagai pencegahan kerusakan beton bertulang pada lingkungan agresif dengan menghasilkan analisis beton bermutu baik dan ramah lingkungan.

Reinforced concrete structures are often exposed to environments containing corrodents such as chloride ions. The penetration of chloride ions will deteriorate the passive layer of the concrete and result in corrosion, thus the use of good-quality concrete is required. In this study, high-strength self-compacting concrete with a variation of metakaolin substitution to cement weight of 0% (control); 10%; 12.5%; 15%; 17.5%; and 20% was used as a solution. The objective of the study was to identify the effect of metakaolin substitution and its optimum level to improve concrete resistance to chloride penetration. This research used an experimental method with concrete cylindrical specimens of 7.5 cm diameter and 15 cm height. The chloride penetration depth test used the accelerated laboratory chloride penetration test method, the specimens were exposed to a chloride environment with a concentration of 2% with a variation of exposure times of 15, 37, and 51 days and then analyzed using the colorimetric AgNO3 method (Fu et al., 2022). The chloride sorptivity test was conducted based on ASTM C.1585 (ASTM International, 2013) using time variations of 30, 90, and 1440 minutes. Based on the results, it was found that 15% metakaolin substitution is the optimum level to reduce the penetration and sorptivity of chloride in concrete as a contribution to its pozzolanic reaction. The research is expected to be useful in the prevention of deterioration of reinforced concrete in aggressive environments by producing good quality and environmentally friendly concrete analysis.

Downloads

Download data is not yet available.

References

[1] Fu C, Li S, He R, Zhou K, Zhang Y. Chloride profile characterization by electron probe microanalysis, powder extraction and AgNO3 colorimetric: A comparative study. Constr Build Mater. 2022 Jul 25;341:127892.
[2] ASTM International. ASTM C1585 – Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM International; 2013. p. 1–6.
[3] Abdulalim Alabdullah A, Iqbal M, Zahid M, Khan K, Nasir Amin M, Jalal FE. Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis. Constr Build Mater. 2022 Aug 22;345:128296.
[4] Tadayon MH, Shekarchi M, Tadayon M. Long-term field study of chloride ingress in concretes containing pozzolans exposed to severe marine tidal zone. Constr Build Mater. 2016 Oct 1;123:611–6.
[5] Wu L, Li W, Yu X. Time-dependent chloride penetration in concrete in marine environments. Constr Build Mater. 2017 Oct 15;152:406–13.
[6] Hilloulin B, Tran VQ. Using machine learning techniques for predicting autogenous shrinkage of concrete incorporating superabsorbent polymers and supplementary cementitious materials. J Build Eng. 2022 May 15;49.
[7] Isteita M, Xi Y. The effect of temperature variation on chloride penetration in concrete. Constr Build Mater. 2017 Dec 15;156:73–82.
[8] Hardianti H, Kristiawan SA, Wibowo. Pengaruh Konsentrasi Klorida Terhadap Laju Penetrasi Ion Klorida Ke Dalam Beton High Volume Fly Ash-Self Compacting Concrete ( HVFA-SCC ). e-Jurnal Matriks Tek Sipil. 2017;(September):974–80.
[9] Obla K, Lobo C, Hong R, Berke N. Evaluation of Chloride Limits for Reinforced Concrete Phase A. National , Silver Spring, MD. 2017 Jul 1. Ready Mixed Concrete Association (NRMCA). 2017.
[10] Carmichael M, Arulraj G. Rapid chloride permeability test on concrete with nano materials. Int J Eng Adv Technol. 2019;8(3).
[11] Choudhary R, Gupta R, Nagar R. Impact on fresh, mechanical, and microstructural properties of high strength self-compacting concrete by marble cutting slurry waste, fly ash, and silica fume. Constr Build Mater. 2020 Apr 10;239:117888.
[12] Adel H, Ghazaan MI, Korayem AH. Machine learning applications for developing sustainable construction materials. Artif Intell Data Sci Environ Sens. 2022 Jan 1;179–210.
[13] Joshaghani A, Moeini MA, Balapour M. Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete. Adv Concr Constr. 2017;5(3):241–55.
[14] Valipour M, Pargar F, Shekarchi M, Khani S, Moradian M. In situ study of chloride ingress in concretes containing natural zeolite, metakaolin and silica fume exposed to various exposure conditions in a harsh marine environment. Constr Build Mater [Internet]. 2013;46:63–70. Available from: http://dx.doi.org/10.1016/j.conbuildmat.2013.03.026
[15] Flores Medina N, Barluenga G, Hernández-Olivares F. Combined effect of Polypropylene fibers and Silica Fume to improve the durability of concrete with natural Pozzolans blended cement. Constr Build Mater [Internet]. 2015;96:556–66. Available from: http://dx.doi.org/10.1016/j.conbuildmat.2015.08.050
[16] Shi X, Xie N, Fortune K, Gong J. Durability of steel reinforced concrete in chloride environments: An overview. Constr Build Mater. 2012 May;30:125–38.
[17] Duan P, Shui Z, Chen W, Shen C. Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete. Constr Build Mater. 2013;44:1–6.
[18] Dousti A, Rashetnia R, Ahmadi B, Shekarchi M. Influence of exposure temperature on chloride diffusion in concretes incorporating silica fume or natural zeolite. Constr Build Mater. 2013;49:393–9.
[19] Valipour M, Pargar F, Shekarchi M, Khani S. Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study. Constr Build Mater [Internet]. 2013;41:879–88. Available from: http://dx.doi.org/10.1016/j.conbuildmat.2012.11.054
[20] Poon CS, Kou SC, Lam L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Constr Build Mater. 2006 Dec 1;20(10):858–65.
[21] Brykov A, Krasnobaeva S, Mokeev M. Hydration of portland cement in the presence of highly reactive metakaolin. Mater Sci Appl. 2015;6(5):391.
[22] Wibowo W, Mediyanto A, Valentin S. Kajian Penetrasi dan Permeabilitas Beton Mutu Tinggi Memadat Mandiri terhadap Variasi Komposisi Metakaolin dan Superplasticizer MasterEase 3029 Kadar 1,9% dari Berat Binder. Matriks Tek Sipil. 2019;7(3):247–54.
[23] Wibowo W, Safitri E, Deni DP. Kajian Karbonasi Pada Beton Mutu Tinggi Memadat Mandiri Dengan Variasi Komposisi Metakaolin. J Ris Rekayasa Sipil. 2020;4(1):1.
[24] Ilić B, Radonjanin V, Malešev M, Zdujić M, Mitrović A. Study on the addition effect of metakaolin and mechanically activated kaolin on cement strength and microstructure under different curing conditions. Constr Build Mater. 2017;133:243–52.
[25] Badogiannis EG, Sfikas IP, Voukia DV, Trezos KG, Tsivilis SG. Durability of metakaolin self-compacting concrete. Constr Build Mater. 2015;82:133-141.
[26] Bu J, Tian Z. Relationship between pore structure and compressive strength of concrete: Experiments and statistical modeling. Sādhanā. 2016;41(3):337–44.
[27] Tafraoui A, Escadeillas G, Vidal T. Durability of the ultra high performances concrete containing metakaolin. Constr Build Mater. 2016;112:980-987.
[28] El-Din HKS, Eisa AS, Aziz BHA, Ibrahim A. Mechanical performance of high strength concrete made from high volume of metakaolin and hybrid fibers. Constr Build Mater. 2017;140:203–9.
[29] EFNARC. EFNARC 2005 Specification and Guidelines for Self-Compacting Concrete. EFNARC; 2005.
[30] Badan Standardisasi Nasional. SNI 03-6468-2000 Tata Cara Perencanaan Campuran Tinggi Dengan Semen Portland Dengan Abu Terbang. Jakarta: Badan Standardisasi Nasional; 2000.
[31] ASTM International. ASTM C-39 Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken; 2014.
[32] Baroghel-Bouny V, Belin P, Maultzsch M, Henry D. AgNO3 spray tests: advantages, weaknesses, and various applications to quantify chloride ingress into concrete. Part 1: Non-steady-state diffusion tests and exposure to natural conditions. Mater Struct. 2007;40:759–781.
[33] Baroghel-Bouny V, Belin P, Maultzsch M, Henry D. AgNO3 spray tests: advantages, weaknesses, and various applications to quantify chloride ingress into concrete. Part 2: Non-steady-state migration tests and chloride diffusion coefficients. Mater Struct. 2007;40:783–799.
[34] Otsuki N, Nagataki S, Nakashita K. Evaluation of the AgNO3 solution spray method for measurement of chloride penetration into hardened cementitious matrix materials. Constr Build Mater. 1993;7:195–201.
[35] Mediyanto A, Syaufina R. Mandiri Dengan Variasi Komposisi Metakaolin Dan Superplasticizer Masterease 3029. 2019;(September):240–6.
Published
2023-08-31
How to Cite
1.
Deni DP, Alfianarrochmah’, Kurnianingsih O. Penetrasi dan Sorptivitas Klorida Beton Mutu Tinggi Memadat Mandiri dengan Variasi Substitusi Metakaolin. J-Sil [Internet]. 2023Aug.31 [cited 2024Dec.22];8(2):115-26. Available from: https://journal.ipb.ac.id/index.php/jsil/article/view/49046
Section
Research Articles