Comparisons of Growth, Yield, and Meteorological Properties of Rice Canopy under Double-Row (Jajar Legowo and Jejer Manten) and Tile Transplanting Systems

Taufiq Yuliawan, Nazif Ichwan, Augustine Ukpoju, Fadli Irsyad, Hiroki Oue

Abstract

Over the past decade, the Indonesian government has been recommending double-row transplanting systems, i.e., Jajar Legowo (JL) and Jejer Manten (JM), to increase rice production. These systems have been reported to obtain higher yield of Indica rice cultivars than the standard tile (TL) system, primarily due to the border effect. However, scientific investigations of the border effect in these transplanting systems remain limited. This study was conducted during the summer seasons in Japan in 2022 and 2023 to observe the plant growth and yield of a Japonica rice cultivar, Nikomaru, and to investigate differences in meteorological properties, such as intercepted solar radiation (SRint). The study found that higher plant competition for light in JM and JL caused a lower tiller number and above-ground biomass (Wt) per hill than in TL. However, due to denser planting, JM and JL obtained higher tiller numbers, Wt, and sink capacity per unit area than TL. Additionally, the denser canopy in JM and JL compared to TL increased SRint by the whole canopy, even though the space between the double rows was wider. Although SRint was not significantly different among
the systems, higher normalized difference vegetation index in JM and JL was strongly correlated with a higher sink filling rate due to the healthier canopy absorbing more solar radiation. The synergistic effect of higher sink capacity and sink filling rate led to higher yields in JM and JL than in TL. This study suggests that JM is the best transplanting system for increasing rice yield. 

References

1. (USDA) United States Department of Agriculture. Production, Supply and Distribution Online Database Available online: https://apps.fas.usda.gov/psdonline (accessed on 10 December 2023).
2. (IPCC) Intergovernmental Panel on Climate Change. Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, 2023;
3. Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice Yields Decline with Higher Night Temperature from Global Warming. Proceedings of the National Academy of Sciences 2004, 101, 9971–9975, doi:10.1073/pnas.0403720101.
4. Masutomi, Y.; Takimoto, T.; Shimamura, M.; Manabe, T.; Arakawa, M.; Shibota, N.; Ooto, A.; Azuma, S.; Imai, Y.; Tamura, M. Rice Grain Quality Degradation and Economic Loss Due to Global Warming in Japan. Environ Res Commun 2019, 1, 121003, doi:10.1088/2515-7620/ab52e7.
5. Rawung, J.B.M.; Indrasti, R.; Sudolar, N.R. The Impact of Technological Innovation of Jajar Legowo 2:1 Planting System on Rice Business Income. In Proceedings of the IOP Conference Series: Earth and Environmental Science 807; IOP Publishing Ltd, July 15 2021; Vol. 807.
6. Toyibah, E.S.; Sujarwo; Nugroho, C.P. Jajar Legowo Planting System as The Strategy on Climate Change Adaptation (Case Study in Srigading Village Lawang District, Malang). Agricultural Socio-Economic Journal 2016, 16, 25–30.
7. (DEPTAN) Departemen Pertanian. Minapadi Azolla Dengan Tanam Jajar Legowo (Teknologi Yang Digunakan Pada Penelitian Adaptif Pengembangan Varietas Padi Unggul Lokal Di Cianjur); DEPTAN: Lembang, 1995;
8. Sarlan, A.; Made, J.M.; Nurwulan, A.; Indra, G.; Priatna, S.; Agus, G. Sistem Tanam LEGOWO; Suharna, Ed.; BB Padi: Sukamandi, 1993;
9. Asnawi, R.; Arief, R.W.; Slameto, S.; Tambunan, R.D.; Martias, M.; Mejaya, M.J.; Fitriani, F. Increasing Rice (Oryza Sativa L.) Productivity and Farmer’s Income through the Implementation of Modified Double Rows Planting System. Annu Res Rev Biol 2021, 36, 42–52, doi:10.9734/arrb/2021/v36i830409.
10. Usman, M.; Anam, C.; Qibtiyah, M. Kajian Macam Pola Tanam Jajar Legowo Dan Kombinasi Pupuk Terhadap Pertumbuhan Dan Produksi Tanaman Padi (Oryza Sativa L.). AGRORADIX : Jurnal Ilmu Pertanian 2019, 2, 59–71, doi:10.52166/agroteknologi.v2i2.1591.
11. Maisura, M.; Jamidi, J.; Husna, A. Respon Pertumbuhan Dan Hasil Tanaman Padi (Oryza Sativa L.) Varietas IPB 3S Pada Beberapa Sistem Jajar Legowo. Jurnal Agrium 2020, 17, 33–44, doi:10.29103/agrium.v17i1.2353.
12. Asnawi, R.; Arief, R.W. Kajian Cara Tanam Jejer Manten Dan Pupuk Hayati Pada Usahatani Padi Sawah Di Kabupaten Pesawaran Provinsi Lampung. Jurnal Pengkajian dan Pengembangan Teknologi Pertanian 2016, 19, 93–102, doi:10.21082/jpptp.v19n2.2016.p93-102.
13. Tanaka, R.; Hakata, M.; Nakano, H. Grain Yield Response to Cultivar and Harvest Time of the First Crop in Rice Ratooning in Southwestern Japan. Crop Sci 2022, 62, 455–465, doi:10.1002/csc2.20645.
14. Irsyad, F.; Oue, H.; Mon, M.M. Monitoring Responses of NDVI and Canopy Temperature in a Rice Field to Soil Water and Meteorological Conditions. IOP Conf Ser Earth Environ Sci 2022, 1059, 012037, doi:10.1088/1755-1315/1059/1/012037.
15. Kriegler, F.J.; Malila, W.A.; Nalepka, R.F.; Richardson, W. Preprocessing Transformations and Their Effects on Multispectral Recognition. In Proceedings of the Remote Sensing of Environment, VI; January 1969; p. 97.
16. Anamaria, R.; Tudor, U. Multispectral Satellite Imagery and Airborne Laser Scanning Techniques for the Detection of Archaeological Vegetation Marks. In Landscape Archaeology on The Northern Frontier of The Roman Empire at Porolissum - an Interdisciplinary Research Project; Coriolan, H., Vlad-Andrei, L., Eds.; Mega Publishing House: Cluj-Napoca, 2016; pp. 141–152 ISBN 978-606-543-787-6.
17. Gallo, K.P.; Daughtry, C.S.T.; Bauer, M.E. Spectral Estimation of Absorbed Photosynthetically Active Radiation in Corn Canopies. Remote Sens Environ 1985, 17, 221–232, doi:10.1016/0034-4257(85)90096-3.
18. Susilastuti, D.; Aditiameri, A.; Buchori, U. The Effect of Jajar Legowo Planting System on Ciherang Paddy Varieties. AGRITROPICA : Journal of Agricultural Sciences 2018, 1, 1–8, doi:10.31186/j.agritropica.1.1.1-8.
19. Sato, K.; Takahashi, K. An Analysis of the Border Effect in the Rice Paddy Fields. Japanese Journal of Crop Science 1983, 52, 168–176, doi:10.1626/jcs.52.168.
20. Mak, M. Estimation of Border Effect on Yield of Rice and Nutrient Uptake. International Journal of Agricultural Science and Food Technology 2021, 255–259, doi:10.17352/2455-815x.000116.
21. Wang, K.; Zhou, H.; Wang, B.; Jian, Z.; Wang, F.; Huang, J.; Nie, L.; Cui, K.; Peng, S. Quantification of Border Effect on Grain Yield Measurement of Hybrid Rice. Field Crops Res 2013, 141, 47–54, doi:10.1016/j.fcr.2012.11.012.
22. Yuliawan, T.; Oue, H.; Ichwan, N.; Ukpoju, A. Comparison of Plant Growth and Yield of Rice under Double-Row and Tile Transplanting Systems. IOP Conf Ser Earth Environ Sci 2023, 1182, 12039, doi:10.1088/1755-1315/1182/1/012039.
23. Fukazawa, M.; Shirakawa, N. Effects of Inabenfide [4′-Chloro-2′-(α-Hydroxybenzyl)-Isonicotinanilide] on Growth, Lodging, and Yield Components of Rice. Plant Prod Sci 2001, 4, 118–125, doi:10.1626/pps.4.118.
24. Okamura, M.; Hosoi, J.; Nagata, K.; Koba, K.; Sugiura, D.; Arai-Sanoh, Y.; Kobayashi, N.; Kondo, M. Cross-Locational Experiments to Reveal Yield Potential and Yield-Determining Factors of the Rice Cultivar ‘Hokuriku 193’ and Climatic Factors to Achieve High Brown Rice Yield over 1.2kg m-2 at Nagano in Central Inland of Japan. Plant Prod Sci 2022, 25, 131–147, doi:10.1080/1343943X.2021.1981140.
25. Yoshinaga, S.; Heinai, H.; Ohsumi, A.; Furuhata, M.; Ishimaru, T. Characteristics of Growth and Quality, and Factors Contributing to High Yield in Newly Developed Rice Variety ‘Akidawara.’ Plant Prod Sci 2018, 21, 186–192, doi:10.1080/1343943X.2018.1463165.
26. (JMA) Japan Meteorological Agency. 過去の気象データ・ダウンロード (Download Historical Data) Available online: https://www.data.jma.go.jp/risk/obsdl/index.php (accessed on 11 February 2023).
27. Monsi, M.; Saeki, T. On the Factor Light in Plant Communities and Its Importance for Matter Production. Ann Bot 2005, 95, 549–567, doi:10.1093/aob/mci052.
28. Oue, H. Evapotranspiration, Photosynthesis and Water Use Efficiency in a Paddy Field (II) — Prediction of Energy Balance and Water Use Efficiency by Numerical Simulations Based on a Multilayer Model. Journal Japan Society Hydrology and Water Resources 2003, 16, 389–407, doi:10.3178/jjshwr.16.389.
29. Katsura, K.; Okami, M.; Mizunuma, H.; Kato, Y. Radiation Use Efficiency, N Accumulation and Biomass Production of High-Yielding Rice in Aerobic Culture. Field Crops Res 2010, 117, 81–89, doi:10.1016/j.fcr.2010.02.006.
30. Yoshida, S. Fundamentals of Rice Crop Science; International Rice Research Institute: Los Banos, 1981;
31. Morita, S.; Shiratsuchi, H.; Takanishi, J.; Fujita, K. Effect of High Temperature on Ripening in Rice Plants : Comparison of the Effects of High Night Temperatures and High Day Temperatures(Crop Physiology and Cell Biology). Japanese journal of crop science 2002, 71, 102–109, doi:10.1626/jcs.71.102.
32. Susilastuti, D.; Aditiameri, A.; Buchori, U. The Effect of Jajar Legowo Planting System on Ciherang Paddy Varieties. AGRITROPICA 2018, 1, 1–8, doi:10.31186/j.agritropica.1.1.1-8.
33. Clerget, B.; Bueno, C.; Domingo, A.J.; Layaoen, H.L.; Vial, L. Leaf Emergence, Tillering, Plant Growth, and Yield in Response to Plant Density in a High-Yielding Aerobic Rice Crop. Field Crops Res 2016, 199, 52–64, doi:10.1016/j.fcr.2016.09.018.
34. Hu, Q.; Jiang, W.; Qiu, S.; Xing, Z.; Hu, Y.; Guo, B.; Liu, G.; Gao, H.; Zhang, H.; Wei, H. Effect of Wide-Narrow Row Arrangement in Mechanical Pot-Seedling Transplanting and Plant Density on Yield Formation and Grain Quality of Japonica Rice. J Integr Agric 2020, 19, 1197–1214, doi:10.1016/S2095-3119(19)62800-5.
35. Xu, J.; Henry, A.; Sreenivasulu, N. Rice Yield Formation under High Day and Night Temperatures—A Prerequisite to Ensure Future Food Security. Plant Cell Environ 2020, 43, 1595–1608, doi:10.1111/pce.13748.
36. Nishimura, S.; Kimiwada, K.; Yagioka, A.; Hayashi, S.; Oka, N. Effect of Intermittent Drainage in Reduction of Methane Emission from Paddy Soils in Hokkaido, Northern Japan. Soil Sci Plant Nutr 2020, 66, 360–368, doi:10.1080/00380768.2019.1706191.
37. Yoshinaga, S.; Heinai, H.; Ohsumi, A.; Furuhata, M.; Ishimaru, T. Characteristics of Growth and Quality, and Factors Contributing to High Yield in Newly Developed Rice Variety ‘Akidawara.’ Plant Prod Sci 2018, 21, 186–192, doi:10.1080/1343943X.2018.1463165.
38. Maruyama, A.; Kuwagata, T.; Ohba, K.; Maki, T. Dependence of Solar Radiation Transport in Rice Canopies on Developmental Stage. JARQ 2007, 41, 39–45, doi:10.6090/jarq.41.39.
39. Hatfield, J.L. Remote Sensing Estimators of Potential and Actual Crop Yield. Remote Sens Environ 1983, 13, 301–311, doi:10.1016/0034-4257(83)90032-9.
40. Zheng, C.; Wang, Y.C.; Xu, W.B.; Yang, D.S.; Yang, G.D.; Yang, C.; Huang, J.L.; Peng, S.B. Border Effects of the Main and Ratoon Crops in the Rice Ratooning System. J Integr Agric 2023, 22, 80–91, doi:10.1016/j.jia.2022.08.048.

Authors

Taufiq Yuliawan
taufiq.yuliawan@gmail.com (Primary Contact)
Nazif Ichwan
Augustine Ukpoju
Fadli Irsyad
Hiroki Oue
YuliawanT., IchwanN., UkpojuA., IrsyadF. and OueH. (2024) “Comparisons of Growth, Yield, and Meteorological Properties of Rice Canopy under Double-Row (Jajar Legowo and Jejer Manten) and Tile Transplanting Systems”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management). Bogor, ID, 14(2), p. 325. doi: 10.29244/jpsl.14.2.325.

Article Details