Evaluation of Floods Susceptibility Models Based on Different Pairwise Parameters in the Analytical Hierarchy Process: Case Study Cilemer and Ciliman Watersheds

Dian Noor Handiani, Ditto Purnomo

Abstract

This study investigated flood vulnerability in the Ciliman and Cilemer Watersheds, situated in Banten Province, and employs a spatial multi-criteria-integrated approach, with a specific focus on the Analytical Hierarchy Process (AHP). Two distinct scenarios, which have different parameter priority, were compared: one based on expert judgment for pairwise parameter comparisons (scenario-1) and the other derived from historical flood occurrences in high and very high vulnerability areas (scenario-2). Seven parameters, including elevation, slope, precipitation, geologic, soil type, land use, and distance to streams were weighted substantially different between the two scenarios. The study validated the flood vulnerability scenarios by contrasting them with historical flood data. Scenario-2 exhibited a closer agreement with the historical flood points during validation, particularly in very high vulnerability areas. Elevation and slope are identified as pivotal factors influencing flood vulnerability: low elevations and gentle slopes increased vulnerability, while higher slopes decreased flood susceptibility.

References

Arnold J.G. and Allen P.M. 1996. Estimating hydrologic budgets for three Illinois watersheds. Journal of Hydrology 176:57-77.

BNPB. 2014. Dokumen Kajian Risiko Bencana Kabupaten Pandeglang 2014-2018.

BNPB. 2023. National Agency for Disaster Management (BNPB) – https://dibi.bnpb.go.id/xdibi/read/37593/36/01/101/2020//2//2. (accessed on 20 September 2023).

Dahri N, Habib A (2017) Monte Carlo simulation-aided analytical hierarchy process (AHP) for flood susceptibility mapping in Gabes Basin (southeastern Tunisia). Environ Earth Sci 76(7): 302

Das S., Pardeshi S.D., Kulkarni P.P., Doke A. (2018) Extraction of lineaments from different azimuth angles using geospatial techniques: a case study of Pravara basin, Maharashtra, India. Arab J Geosci 11(8): 160. doi:10.1007/s12517-018-3522-6

Djuwansah M.R. 2006. Teknologi Indonesia. LIPI Press. Volume 29, No.2, Jakarta.

Gan B.R.; Liu X.N.; Yang X.G.; Wang X.K.; Zhoua J.W. The impact of human activities on the occurrence of mountain flood hazards: Lessons from the 17 August 2015 flash flood/debris flow event in Xuyong County, South-Western China. Geomat. Nat. Hazards Risk 2018, 9, 816–840.

García-Ruiz J.M, López-Moreno J.I., Vicente-Serrano S.M., Lasanta–Martínez T., Beguería S. 2008. Mediterranean water resources in a global change scenario. Earth-Science Reviews. Volume 105, Issues 3–4, April 2011, Pages 121-139. https://doi.org/10.1016/j.earscirev.2011.01.006.

He B., Y-G Xu, Huang X.L., Luo Z.Y., Shi Y.R., Yang Q.J. (2007) Age and duration of the Emeishan flood volcanism, SW China: geochemistry and SHRIMP zircon U–Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth Planet Sci Lett 255:306–323.

Kristofery L., Murtilaksono K., & Baskoro D. P. T. 2019. Simulasi Perubahan Penggunaan Lahan Terhadap Karakteristik Hidrologi Daerah Aliran Sungai Ciliman. Jurnal Ilmu Tanah Dan Lingkungan, 21(2), 66–71.

Miardini A. and Saragih G. S. 2019. Penentuan Prioritas Penanganan Banjir Genangan Berdasarkan Tingkat Kerawanan Menggunakan Topographic Wetness Index: Studi Kasus di DAS Solo. Jurnal Ilmu Lingkungan, 17(1),113-119, doi:10.14710/jil.17.1.x113-119

Mujib, M., Apriyanto, B., Kurnianto, F., Ikhsan, F., Nurdin, E., Pangastuti, E., & Astutik, S. (2021). Assessment of Flood Hazard Mapping Based on Analytical Hierarchy Process (AHP) and GIS: Application in Kencong District, Jember Regency, Indonesia. Geosfera Indonesia, 6(3), 353-376. doi:10.19184/geosi.v6i3.21668.

Ouma, Y. and Tateishi, R. (2014) Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS: Methodological Overview and Case Study Assessment. Water, 6, 1515-1545. http://dx.doi.org/10.3390/w6061515.

Predick K.I. and Turner M.G. 2008. Landscape configuration and flood frequency influence invasive shrubs in floodplain forests of the Wisconsin River (USA). Journal of Ecology 96(1):91 – 102. DOI: 10.1111/j.1365-2745.2007.01329.x.

Ramadhani D., Hariyanto T., & Nurwatik. 2021. Penerapan Metode Analytical Hierarchy Process (AHP) dalam Pemetaan Potensi Banjir Berbasis Sistem Informasi Geografis (Studi Kasus: Kota Malang, Jawa Timur ) Java). Journal of Geodesy and Geomatics, 17(1), 72–80.

Rendana, M., Idris, W.M.R., Rahim, S.A. Rahman Z.A, Lihan T. Predicting soil erosion potential under CMIP6 climate change scenarios in the Chini Lake Basin, Malaysia. Geosci. Lett. 10, 1 (2023). https://doi.org/10.1186/s40562-022-00254-7

Rimba A.B.; Setiawati M.D.; Sambah A.B.; Miura F. 2017. Physical Flood Vulnerability Mapping Applying Geospatial Techniques in Okazaki City, Aichi Prefecture, Japan. Urb. Sci. 2017, 1, 7.

Roy D.C., Blaschke T., 2015. Spatial vulnerability assessment of floods in the coastal regions of Bangladesh. Geomatics, Nat. Hazards Risk 6, 21–44. https://doi.org/10. 1080/19475705.2013.816785.

Saaty T.L. 1977. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15:234–281

Saaty T.L. 1980. The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill Book Co, New York. pp. 287

Saaty T.L., Vargas L.G. 2001. Models, Methods, Concepts and Applications of the Analytic Hierarchy Process. Kluwer, Dordrecht 333 pp

Simamora W. H. 2006. Anomali Geomagnet, Kaitannya dengan Zone Mineralisasi di Daerah Malingping, Bayah, dan sekitarnya, Kabupaten Lebak, Provinsi Banten. Jurnal Sumber Daya Geologi, 16 (5): 285-301.

Slamet N.S. and Sarwono. 2016. Simulasi genangan banjir menggunakan data ASTER DEM pada aliran Sungai Cilemer. J. Sumber Daya Air, 12:61-67.

Tien Bui D., Pradhan B., Nampak H., Bui Q.T., Tran Q.A., Nguyen Q.P. 2016. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modeling in a high-frequency tropical cyclone area using GIS. J Hydrol 540: 317–330.

Wigati R., Arifin F.S., Lestari M.D. 2020. Analisis Banjir Sub DAS Cilemer HM 0+00 – HM 53+00. Jurnal Ilmiah Rekayasa Sipil Vol.17 No. 2 Edisi Oktober 2020. http://ejournal2.pnp.ac.id/index.php/jirs/

Xu Z. and Liao, H. 2014. Intuitionistic Fuzzy Analytic Hierarchy Process. IEEE Transactions on Fuzzy Systems, 22, 749-761.

Authors

Dian Noor Handiani
ddhandiani@itenas.ac.id (Primary Contact)
Ditto Purnomo
Author Biography

Dian Noor Handiani, Program Study of Geodetic Engineering, Faculty of Civil and Planning Engineering, National Institute of Technology, Bandung, 40124, Indonesia

Lecturer at Geodetic Engineering Department, Institut Teknologi Nasional, Bandung.

HandianiD. N. and PurnomoD. (2024) “Evaluation of Floods Susceptibility Models Based on Different Pairwise Parameters in the Analytical Hierarchy Process: Case Study Cilemer and Ciliman Watersheds”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management). Bogor, ID, 14(4), p. 684. doi: 10.29244/jpsl.14.4.684.

Article Details