Vulnerability of multi-designated landscape and its connectivity toward conservation: A case study in Kampar Kerumutan, Riau, Indonesia
Abstract
Indonesia is declared by the United Nations as a country that meets its conservation targets. However, Indonesia has not maximized the potential conservation of its territory, and the ecosystem is still threatened by anthropogenic activity, particularly due to small and large scales cultivation. Besides, the Government of Indonesia (GoI) built taskforces at the national level to avoid greenhouse gas emissions through FOLU Net Sink 2030 that could tackle climate and biodiversity crises. Therefore, identifying OECMs and creating a sustainable management framework by elaborating on the carbon pool and its dynamics across the Indonesian landscape is crucial to meet the targets of the global conservation agenda. Kampar Kerumutan Landscape (KKL) is one of the critical landscapes in Indonesia with high potential conservation for biodiversity and high intervention from various concessions. Our result showed that most KKLs were categorized as potential restoration areas. Industrial forest plantations (IFP) had the highest threat for conservation. To connect the potential highly conserved areas within KKL for species mobility, restoration projects (particularly in IFP, Protected Areas, and Non-managed areas) should be conducted to achieve human and nature balance in the KKL.
References
Austin, K. G., Schwantes, A., Gu, Y., & Kasibhatla, P. S. (2019). What causes deforestation in Indonesia? Environmental Research Letters, 14(2), 024007. https://doi.org/10.1088/1748-9326/aaf6db
Barlow, J., Lennox, G. D., Ferreira, J., Berenguer, E., Lees, A. C., Nally, R. mac, Thomson, J. R., Ferraz, S. F. de B., Louzada, J., Oliveira, V. H. F., Parry, L., Ribeiro de Castro Solar, R., Vieira, I. C. G., Aragão, L. E. O. C., Begotti, R. A., Braga, R. F., Cardoso, T. M., de Oliveira, R. C., Souza Jr, C. M., … Gardner, T. A. (2016). Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 535(7610), 144–147. https://doi.org/10.1038/nature18326
Brancalion, P. H. S., Niamir, A., Broadbent, E., Crouzeilles, R., Barros, F. S. M., Almeyda Zambrano, A. M., Baccini, A., Aronson, J., Goetz, S., Reid, J. L., Strassburg, B. B. N., Wilson, S., & Chazdon, R. L. (2019). Global restoration opportunities in tropical rainforest landscapes. Science Advances, 5(7). https://doi.org/10.1126/sciadv.aav3223
Bugalho, M. N., Dias, F. S., Briñas, B., & Cerdeira, J. O. (2016). Using the high conservation value forest concept and Pareto optimization to identify areas maximizing biodiversity and ecosystem services in cork oak landscapes. Agroforestry Systems, 90(1), 35–44. https://doi.org/10.1007/s10457-015-9814-x
Chandra, A., & Idrisova, A. (2011). Convention on Biological Diversity: a review of national challenges and opportunities for implementation. Biodiversity and Conservation, 20(14), 3295–3316. https://doi.org/10.1007/s10531-011-0141-x
Condro, A. A., Prasetyo, L. B., Rushayati, S. B., Santikayasa, I. P., & Iskandar, E. (2022). Protected areas slow down tropical rainforest disturbance in the Leuser Ecosystem, Indonesia. Journal of Land Use Science, 17(1), 454–470. https://doi.org/10.1080/1747423X.2022.2115571
de Almeida, A. S., Vieira, I. C. G., & Ferraz, S. F. B. (2020). Long-term assessment of oil palm expansion and landscape change in the eastern Brazilian Amazon. Land Use Policy, 90, 104321. https://doi.org/10.1016/j.landusepol.2019.104321
Deere, N. J., Guillera‐Arroita, G., Baking, E. L., Bernard, H., Pfeifer, M., Reynolds, G., Wearn, O. R., Davies, Z. G., & Struebig, M. J. (2018). High Carbon Stock forests provide co‐benefits for tropical biodiversity. Journal of Applied Ecology, 55(2), 997–1008. https://doi.org/10.1111/1365-2664.13023
Díaz, S., Zafra-Calvo, N., Purvis, A., Verburg, P. H., Obura, D., Leadley, P., Chaplin-Kramer, R., de Meester, L., Dulloo, E., Martín-López, B., Shaw, M. R., Visconti, P., Broadgate, W., Bruford, M. W., Burgess, N. D., Cavender-Bares, J., DeClerck, F., Fernández-Palacios, J. M., Garibaldi, L. A., … Zanne, A. E. (2020). Set ambitious goals for biodiversity and sustainability. Science, 370(6515), 411–413. https://doi.org/10.1126/science.abe1530
Dickson, B. G., Albano, C. M., Anantharaman, R., Beier, P., Fargione, J., Graves, T. A., Gray, M. E., Hall, K. R., Lawler, J. J., Leonard, P. B., Littlefield, C. E., McClure, M. L., Novembre, J., Schloss, C. A., Schumaker, N. H., Shah, V. B., & Theobald, D. M. (2019). Circuit-theory applications to connectivity science and conservation. Conservation Biology, 33(2), 239–249. https://doi.org/10.1111/cobi.13230
Dinerstein, E., Joshi, A. R., Vynne, C., Lee, A. T. L., Pharand-Deschênes, F., França, M., Fernando, S., Birch, T., Burkart, K., Asner, G. P., & Olson, D. (2020). A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Science Advances, 6(36). https://doi.org/10.1126/sciadv.abb2824
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber, C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., … Saleem, M. (2017). An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience, 67(6), 534–545. https://doi.org/10.1093/biosci/bix014
Donald, P. F., Buchanan, G. M., Balmford, A., Bingham, H., Couturier, A. R., la Rosa, G. E., Gacheru, P., Herzog, S. K., Jathar, G., Kingston, N., Marnewick, D., Maurer, G., Reaney, L., Shmygaleva, T., Sklyarenko, S., Stevens, C. M. D., & Butchart, S. H. M. (2019). The prevalence, characteristics and effectiveness of Aichi Target 11′s “other effective area‐based conservation measures” (OECMs) in Key Biodiversity Areas. Conservation Letters, 12(5). https://doi.org/10.1111/conl.12659
Dunning, K. (2022). Biodiversity conservation policy in megadiverse countries: Comparing policy systems for 2020 targets to inform management in the coming decades. Journal of Environmental Management, 302, 113815. https://doi.org/10.1016/j.jenvman.2021.113815
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., … Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342. https://doi.org/10.1038/nature10452
Forest Peoples Program. (2011). Indonesia: indigenous people and the Kampar Peninsula. http://www.forestpeoples.org/sites/fpp/files/publication/2010/05/kampar-peninsula-2009-briefing.pdf
Gasparini, K. A. C., Silva Junior, C. H. L., Shimabukuro, Y. E., Arai, E., Aragão, L. E. O. C. e, Silva, C. A., & Marshall, P. L. (2019). Determining a Threshold to Delimit the Amazonian Forests from the Tree Canopy Cover 2000 GFC Data. Sensors, 19(22), 5020. https://doi.org/10.3390/s19225020
Gaveau, D. L. A., Epting, J., Lyne, O., Linkie, M., Kumara, I., Kanninen, M., & Leader-Williams, N. (2009). Evaluating whether protected areas reduce tropical deforestation in Sumatra. Journal of Biogeography, 36(11), 2165–2175. https://doi.org/10.1111/j.1365-2699.2009.02147.x
Gaveau, D. L. A., Locatelli, B., Salim, M. A., Husnayaen, Manurung, T., Descals, A., Angelsen, A., Meijaard, E., & Sheil, D. (2022). Slowing deforestation in Indonesia follows declining oil palm expansion and lower oil prices. PLOS ONE, 17(3), e0266178. https://doi.org/10.1371/journal.pone.0266178
Gaveau, D. L. A., Locatelli, B., Salim, M. A., Yaen, H., Pacheco, P., & Sheil, D. (2019). Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conservation Letters, 12(3). https://doi.org/10.1111/conl.12622
Goldammer, J. G., & Seibert, B. (1990). The Impact of Droughts and Forest Fires on Tropical Lowland Rain Forest of East Kalimantan. Fire in the Tropical Biota, 11–31. https://doi.org/10.1007/978-3-642-75395-4_2
Gregory, A., Spence, E., Beier, P., & Garding, E. (2021). Toward Best Management Practices for Ecological Corridors. Land, 10(2), 140. https://doi.org/10.3390/land10020140
Hansen, M. C., Potapov, P. v., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. v., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science. https://doi.org/10.1126/science.1244693
Hodgson, J. A., Wallis, D. W., Krishna, R., & Cornell, S. J. (2016). How to manipulate landscapes to improve the potential for range expansion. Methods in Ecology and Evolution, 7(12), 1558–1566. https://doi.org/10.1111/2041-210X.12614
Hughes, A. C. (2017). Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere, 8(1). https://doi.org/10.1002/ecs2.1624
Keeley, A. T. H., Beier, P., & Jenness, J. S. (2021). Connectivity metrics for conservation planning and monitoring. Biological Conservation, 255, 109008. https://doi.org/10.1016/j.biocon.2021.109008
Laurance, W. F., Goosem, M., & Laurance, S. G. W. (2009). Impacts of roads and linear clearings on tropical forests. In Trends in Ecology and Evolution. https://doi.org/10.1016/j.tree.2009.06.009
Margono, B. A., Turubanova, S., Zhuravleva, I., Potapov, P., Tyukavina, A., Baccini, A., Goetz, S., & Hansen, M. C. (2012). Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010. Environmental Research Letters, 7(3), 2000–2010. https://doi.org/10.1088/1748-9326/7/3/034010
MoEF. (2022). National Contribution in Climate Change. http://ditjenppi.menlhk.go.id/berita-ppi/4357-enhanced-ndc-komitmen-indonesia-untuk-makin-berkontribusi-dalam-menjaga-suhu-global.html
Noon, M. L., Goldstein, A., Ledezma, J. C., Roehrdanz, P. R., Cook-Patton, S. C., Spawn-Lee, S. A., Wright, T. M., Gonzalez-Roglich, M., Hole, D. G., Rockström, J., & Turner, W. R. (2021). Mapping the irrecoverable carbon in Earth’s ecosystems. Nature Sustainability, 5(January). https://doi.org/10.1038/s41893-021-00803-6
Plumptre, A. J., Baisero, D., Belote, R. T., Vázquez-Domínguez, E., Faurby, S., Jȩdrzejewski, W., Kiara, H., Kühl, H., Benítez-López, A., Luna-Aranguré, C., Voigt, M., Wich, S., Wint, W., Gallego-Zamorano, J., & Boyd, C. (2021). Where Might We Find Ecologically Intact Communities? Frontiers in Forests and Global Change, 4. https://doi.org/10.3389/ffgc.2021.626635
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL, 7(1), 217–240. https://doi.org/10.5194/soil-7-217-2021
Rahman, D.A., Santosa, Y., Purnamasari, I., Condro, A. A. (2022). Drivers of Three Most Charismatic Mammalian Species Distribution Across a Multiple-use Tropical Forest Landscape of Sumatera Indonesia. MDPI Animals, 2(19),272. https://doi.org/10.3390/ani12192722
Reed, J., van Vianen, J., Barlow, J., & Sunderland, T. (2017). Have integrated landscape approaches reconciled societal and environmental issues in the tropics? Land Use Policy, 63, 481–492. https://doi.org/10.1016/j.landusepol.2017.02.021
RER. (2020). Laporan Kemajuan RER 2020. Report. https://www.rekoforest.org/id/laporan-publikasi/english-rer-2020-progress-report-2/
Riggs, R. A., Achdiawan, R., Adiwinata, A., Boedhihartono, A. K., Kastanya, A., Langston, J. D., Priyadi, H., Ruiz-Pérez, M., Sayer, J., & Tjiu, A. (2021). Governing the landscape: potential and challenges of integrated approaches to landscape sustainability in Indonesia. Landscape Ecology, 36(8), 2409–2426. https://doi.org/10.1007/s10980-021-01255-1
Rintelen, K. V., Arida, E., Hauser, C. (2017). A Review of Biodiversity-Related Issue and Challenges in Megadiverse Indonesia and Other Southeast Asian Countries. Research Ideas and Outcomes. https://doi.org/10.3897/rio.3.e20860
Saranya, K. R. L., Lakshmi, T. V., & Reddy, C. S. (2022). Analysing the trends in annual forest loss hotspots in the regional landscape of Eastern Ghats, India. Remote Sensing Applications: Society and Environment, 26, 100731. https://doi.org/10.1016/j.rsase.2022.100731
Sari, D. A., Margules, C., Lim, H. S., Widyatmaka, F., Sayer, J., Dale, A., & Macgregor, C. (2021). Evaluating policy coherence: A case study of peatland forests on the Kampar Peninsula landscape, Indonesia. Land Use Policy, 105, 105396. https://doi.org/10.1016/j.landusepol.2021.105396
Saura, S., & Rubio, L. (2010). A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography, 33(3), 523–537. https://doi.org/10.1111/j.1600-0587.2009.05760.x
Scherr, S., Shames, S., & Friedman, R. (2013). Defining Integrated Landscape Management for Policy Makers. Ecoagriculture Policy Focus No. 10. https://ecoagriculture.org/publication/defining-integrated-landscape-management-for-policy-makers/
Scriven, S. A., Hodgson, J. A., McClean, C. J., & Hill, J. K. (2015). Protected areas in Borneo may fail to conserve tropical forest biodiversity under climate change. Biological Conservation, 184, 414–423. https://doi.org/10.1016/j.biocon.2015.02.018
Spawn, S. A., Sullivan, C. C., Lark, T. J., & Gibbs, H. K. (2020). Harmonized global maps of above and belowground biomass carbon density in the year 2010. Scientific Data, 7(1), 1–22. https://doi.org/10.1038/s41597-020-0444-4
Tropenbos. (2019). The strategic role of stakeholder mapping and engagement on KEE development. The strategic role of stakeholder mapping and engagement on KEE development
UNDP. (2021). Aichi Biodiversity Target 11 Country Dossier: Indonesia. https://www.cbd.int/pa/doc/dossiers/indonesia-abt11-country-dossier2021.pdf
Vandergast, A. G., Perry, W. M., Lugo, R. v., & Hathaway, S. A. (2011). Genetic landscapes GIS Toolbox: Tools to map patterns of genetic divergence and diversity. Molecular Ecology Resources, 11(1), 158–161. https://doi.org/10.1111/j.1755-0998.2010.02904.x
Watson, J. E. M., Iwamura, T., & Butt, N. (2013). Mapping vulnerability and conservation adaptation strategies under climate change. Nature Climate Change, 3(11), 989–994. https://doi.org/10.1038/nclimate2007
WCPA. (2019). Recognizing and Reporting Other Effective Area-Based Conservation Measures. Report https://portals.iucn.org/library/sites/library/files/documents/PATRS-003-En.pdf
Wendland, K. J., Baumann, M., Lewis, D. J., Sieber, A., & Radeloff, V. C. (2015). Protected Area Effectiveness in European Russia: A Postmatching Panel Data Analysis. Land Economics, 91(1), 149–168. https://doi.org/10.3368/le.91.1.149
Xu, H., Cao, Y., Yu, D., Cao, M., He, Y., Gill, M., & Pereira, H. M. (2021). Ensuring effective implementation of the post-2020 global biodiversity targets. Nature Ecology & Evolution, 5(4), 411–418. https://doi.org/10.1038/s41559-020-01375-y
Authors
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).