Assessment of the success of canopy cover revegetation of former coal mine lands with Forest Canopy Density (FCD) Model in Kutai Kartanegara, East Kalimantan
Abstrak
Pertambangan batubara berperan penting dalam pertumbuhan perekonomian Indonesia, meskipun aktivitas tersebut berdampak negatif bagi lingkungan. Meminimalisir hal tersebut, pemerintah Indonesia mewajibkan reklamasi di lahan bekas tambang dengan salah satu indikator nya adalah keberhasilan tutupan tajuk. Saat ini belum ada metode terukur yang dapat menentukan tingkat keberhasilan tutupan tajuk pada lahan reklamasi. Penelitian ini dilakukan untuk mengembangkan metode pengukuran berbasis data remote sensing dengan pendekatan Forest Canopy Density (FCD) yang dilakukan di wilayah izin pertambangan PT. Multi Harapan Utama, Kutai Kertanegara. Pemodelan FCD dilakukan dengan mengintegrasikan 4 indeks biofisik dari pengolahan citra Landsat 8 OLI TIRS selama 2013–2021. Hubungan antara nilai FCD terhadap tutupan tajuk di lapangan menggunakan regresi linier untuk memperoleh nilai keberhasilan tutupan tajuk berdasarkan nilai FCD. Hasil pemodelan FCD menunjukan tren kenaikan setiap tahunnya, khususnya pada 2 tahun pertama setelah penanaman. Analisis regresi menunjukan hubungan kuat antara nilai FCD dengan nilai tutupan tajuk dengan R2=0,775 dan mendapatkan nilai FCD 75,35 merupakan batas keberhasilan tutupan tajuk di lahan reklamasi. Penelitian ini menunjukkan bahwa pendekatan FCD dapat diterapkan untuk menentukan tingkat keberhasilan reklamasi lahan bekas tambang
Referensi
Ang, M. L. E., Arts, D., Crawford, D., Labatos, B. V., Ngo, K. D., Owen, J. R., Gibbins, C., & Lechner, A. M. (2021). Socio-environmental land cover time-series analysis of mining landscapes using Google Earth Engine and web-based mapping. Remote Sensing Applications: Society and Environment, 21(July 2020). https://doi.org/10.1016/j.rsase.2020.100458
Ashaari, F., Kamal, M., & Dirgahayu, D. (2018). Comparison of Model Accuracy in Tree Canopy Density Estimation Using Single Band, Vegetation Indices and Forest Canopy Density (Fcd) Based on Landsat-8 Imagery (Case Study: Peat Swamp Forest in Riau Province). International Journal of Remote Sensing and Earth Sciences (IJReSES), 15(1), 81. https://doi.org/10.30536/j.ijreses.2018.v15.a2845
Azizi, Z., Najafi, A., & Sohrabi, H. (2008). Forest Canopy Density Estimating , Using Satellite Images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 4. https://doi.org/10.13140/2.1.2953.6967
Badan Pusat Statistika. (2022). Statistik Indonesia 2022. In Statistik Indonesia 2020 (Vol. 1101001). https://www.bps.go.id/publication/2020/04/29/e9011b3155d45d70823c141f/statistik-indonesia-2020.html
BP. (2022). BP Statistical Review of World Energy 2022,( 71st edition). [Online] London: BP Statistical Review of World Energy., 1–60. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf
Falensky, M. A., Sulti, A. L., Putra, R. D., & Marko, K. (2020). Application of Forest Canopy Density (FCD) Model for the Hotspot Monitoring of Crown Fire in Tebo, Jambi Province. Jurnal Geografi Lingkungan Tropik, 4(1), 59–67. https://doi.org/10.7454/jglitrop.v4i1.76
Frazer, G.W., Canham, C.D., Lertzman, K.P. (1999): Gap Light Analyzer (GLA): Imaging software to extract canopy structure and gap light transmission indices from truecolour fisheye photographs, users manual and program documentation. 36 pp. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York
Frouz, J., Dvorščík, P., Vávrová, A., Doušová, O., Kadochová, Š., & Matějíček, L. (2015). Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites. Ecological Engineering, 84, 233–239. https://doi.org/10.1016/j.ecoleng.2015.09.027
Godinho, S., Gil, A., Guiomar, N., Neves, N., & Pinto-Correia, T. (2016). A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal. Agroforestry Systems, 90(1), 23–34. https://doi.org/10.1007/s10457-014-9769-3
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Jain, P., Ahmed, R., Rehman, S., & Sajjad, H. (2020). Detecting disturbed forest tracts in the Sariska Tiger Reserve, India, using forest canopy density and fragmentation models. Modeling Earth Systems and Environment, 6(3), 1373–1385. https://doi.org/10.1007/s40808-020-00755-4
Krisnawati, H., Varis, E., Kallio, M., Kanninen, M. (2011). Paraserianthes falcataria (L.) Nielsen Ecology , silviculture and productivity. Center for International Forestry Research : Bogor.
Kurniawan, Ali. R; Surono, W. (2013). Model Reklamasi Tambang Rakyat Berwawasan Lingkungan : Tinjauan Atas Reklamasi Lahan Bekas Tambang Batu Apung Ijobalit, Kabupaten Lombok Timur, Propinsi Nusa Tenggara Barat. Jurnal Teknologi Mineral Dan Batubara, 9(September), 165–174.
Liu, Y., Zhou, W., Yan, K., Guan, Y., & Wang, J. (2022). Identification of the disturbed range of coal mining activities: A new land surface phenology perspective. Ecological Indicators, 143(August), 109375. https://doi.org/10.1016/j.ecolind.2022.109375
Mohsin, M., Zhu, Q., Naseem, S., Sarfraz, M., & Ivascu, L. (2021). Economic Growth , Social Interaction , and Public Health : An Application of Semi-Quantitative Mathematical Approach. Processes, 9(972).
Mondal, I., Thakur, S., Juliev, M., & Kumar De, T. (2021). Comparative analysis of forest canopy mapping methods for the Sundarban biosphere reserve, West Bengal, India. Environment, Development and Sustainability, 23(10), 15157–15182. https://doi.org/10.1007/s10668-021-01291-6
Pemerintah Indonesia. 2018. Keputusan Menteri ESDM Nomor No.1827K/30/MEM/2018 tentang Pedoman Pelaksanaan Kaidah Teknik Pertambangan Yang Baik Pemerintah Indonesia. Sekretariat Negara. Jakarta
Pemerintah Indonesia. 2020. Undang-undang Republik Indonesia Nomor 03 Tahun 2020 tentang Perubahan Atas Undang-Undang No.4 tahun 2009 tentang Pertambangan Mineral dan Batubara. Sekretariat Negara. Jakarta
Pratiwi, Narendra, B. H., & Mulyanto, B. (2020). Soil properties improvement and use of adaptive plants for land rehabilitation of post tin mining closure in Bangka Island, Indonesia. Biodiversitas, 21(2), 505–511. https://doi.org/10.13057/biodiv/d210211
Rikimaru, A., & Miyatake, S. (2002). Development of Forest Canopy Density Mapping and Monitoring Model using Indices of Vegetation , Bare soil and Shadow. Geospatial World, Acrs, 1–6. www.gisdevelopment.net
Rikimaru, A., 1996. Landsat TM data processing guide for forest canopy density mapping and monitoring model. In: International Tropical Timber Organization (ITTO) workshop on utilization of remote sensing in site assessment and planning for rehabilitation of logged-over forest, Bangkok, Thailand, pp. 1–8
Tichý, L. (2016). Field test of canopy cover estimation by hemispherical photographs taken with a smartphone. Journal of Vegetation Science, 27(2), 427–435. https://doi.org/10.1111/jvs.12350
Tiwary, R. K. (2001). Environmental impact of coal mining on water regime and its management. Water, Air, and Soil Pollution, 132(1–2), 185–199. https://doi.org/10.1023/A:1012083519667
WCA. Coal facts,Coal contribution, https://www.worldcoal.org/coal-facts/coalscontribution/, 2022
Welles, J. M., & Cohen, S. (1996). Canopy structure measurement by gap fraction analysis using commercial instrumentation. Journal of Experimental Botany, 47(302), 1335–1342. https://doi.org/10.1093/jxb/47.9.1335
Xiao, W., Deng, X., He, T., & Chen, W. (2020). Mapping annual land disturbance and reclamation in a surface coal mining region using google earth engine and the landtrendr algorithm: A case study of the shengli coalfield in Inner Mongolia, China. Remote Sensing, 12(10). https://doi.org/10.3390/rs12101612
Xiao, W., Deng, X., He, T., & Guo, J. (2023). Using POI and time series Landsat data to identify and rebuilt surface mining, vegetation disturbance and land reclamation process based on Google Earth Engine. Journal of Environmental Management, 327, 116920. https://doi.org/10.1016/j.jenvman.2022.116920
Zulkarnain., Joy, B., Tuhpawana, P., Prawira, I. (2014). Soil Erosion Assessment of The Post-Coal Mining Site in Kutai Kartanagera District, East Kalimantan Province. International Journal of Science and Engineering, 7(2), 130–136. https://doi.org/10.12777/ijse.7.2.130-136
Penulis
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Rincian Artikel
10.15243/jdmlm.2025.122.7141