Effect of Chitosan-PMAA-Nutrients Slow-release Fertilizer on Germination of Falcataria moluccana (Miq.) Barneby & J. W. Grimes
Abstract
Slow-release fertilizer (SRF) with chitosan (CS) coating as a supply of plant nutrients is an alternative to the efficient use of conventional chemical fertilizers and reduces environmental pollution. However, its potential in woody plants is limited. This study aimed to analyze the effect of SRF on Falcataria moluccana germination and SRF phosphorus release rate. This study used SRF from polymerizing CS with methacrylic acid (MAA) to trap nutrients (CS-PMAA-nutrients SRF). The seeds of F. moluccana were germinated at six concentrations SRF: without fertilizer (F0), SRF CS dose 0.5% weight 0.03 g (F1), SRF CS 0.5% 0.01 g (F2), SRF CS 0.7% 0.03 g (F3), SRF CS 0.7% 0.01 g (F4), and conventional fertilizer (F5) for 21 days. SRF can increase the germination of F. moluccana. F4 increased normal sprout (10%) and germination power (16%) of F. moluccana. Furthermore, SRF with a concentration of 0.01 g produced a higher germination value than a concentration of 0.03 g. The release rate of SRF’s nutrients was slower (91.80% phosphorus) than conventional fertilizers. SRF application can reduce nutrients lost and increase the efficiency of nutrient absorption. Hence, it can improve F. moluccana growth.
References
Al-Ansari F, Ksiksi T. 2016. A quantitative assessment of germination parameters: the case of Crotalaria persica and Tephrosia apollinea. The Open Ecology Journal. 9(1):13-21. doi: 10.2174/1874213001609010013.
Alfaro M, Salazar F, Iraira S, Tueber N, Villarroel D, Ramirez L. 2008. Nitrogen, phosphorus, and potassium losses in a grazing system with different stocking rates in a volcanic soil. Chilean J. of Agric. Res. 68:146-155. doi: 10.4067/S0718-58392008000200004.
Ali LG, Nulit R, Ibrahim MH, Yien CYS. 2020. Enhancement of germination and early seedling growth of rice (Oryza sativa) var. FAR044 by seed priming under normal and drought stressed conditions. Journal of Plant Nutrition. 43(11):1579-1593. doi: 10.1080/01904167.2020.1739298.
Amanullah, Iqbal A, Ali A, Fahad S, Parmar B. 2016. Nitrogen source and rate management improve maize productivity of smallholders under semiarid climates. Front. Plant Sci. 7:1773. doi: 10.3389/fpls.2016.01773.
Anisuzzaman M, Rafii MY, Jaafar NM, Ramlee SI, Ikbal MF, Haque MA. 2021. Effect of organic and inorganic fertilizer on the growth and yield components of traditional and improved rice (Oryza sativa L.) genotypes in Malaysia. Agronomy 11:1830. doi: 10.3390/agronomy11091830.
Baskorowati L. 2014. Budidaya Sengon Unggul (Falcataria moluccana) Untuk Pengembangan Hutan Rakyat. Bogor (ID): IPB Press.
Bhardwaj AK, Arya G, Kumar R, Hamed L, Pirasteh-Anosheh H, Jasrotia P, Kashyap PL, Singh GP. 2022. Switching to nanonutrients for sustaining agroecosystems and environment: the challenges and benefits in moving up from ionic to particle feeding. Journal of Nanobiotechnology. 20(19):1-28. doi: 10.1186/s12951-021-01177-9.
Chandini, Kumar R, Kumar R, Prakash O. 2019. The impact of chemical fertilizers on our environment and ecosystem. In: Research trends in environmental sciences. New Delhi (IN): AkiNik Publications.
Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V. 2019. Zinc encapsulated chitosan nanoparticle to promote maize crop yield. Int. J. of Biological. Macromolecules. 127:126-135. doi: 10.1016/j.ijbiomac.2018.12.274.
Codognoto LC, Conde TT, Maltoni KL, Faria GA, dos Reis AR. 2019. Physiological response of marandu grass seeds exposed to NPK fertilizer. Ciencia Rural. 49(6):1-7. doi: 10.1590/0103-8478cr20180084.
Cole JC, Smith MW, Penn CJ, Cheary BS, Conaghan KJ. 2016. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Scientia Horticulturae. 211:420-430. doi: 10.1016/j.scienta.2016.09.028.
Corradini E, de Moura MR, Mattoso LHC. 2010. A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polymer Lett. 4(8):509-515. doi: 10.3144/expresspolymlett.2010.64.
de Medeiros JAD, Nunes SPL, Felix FC, dos Santos Ferrari C, Pachece MV, Torres SB. 2020. Vigor test of (strong) normal intact Amburana cearensis (Allemao) A.C. Smith seedlings. Journal of Seed Science. 42(5):1-10. doi: 10.1590/2317-1545v42221611.
de Moura MR, Aouada FA, Mattoso LHC. 2008. Preparation of chitosan nanoparticles using methacrylic acid. J. of Colloid and Interface Sci. 321(2):477-483. doi: 10.1016/j.jcis.2008.02.006.
Elshamy MT, Elkhallal SM, Husseiny SM, Farroh KY. 2019. Application of nano-chitosan NPK fertilizer on growth and productivity of potato plant. J. Sci. Res. Sci. 36. doi: 10.21608/jsrs.2019.58522.
Essawy HA, Ghazy MBM, El-Hai FA, Mohamed MF. 2016. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. International Journal of Biological Macromolecules. 89:144-151. doi: 10.1016/j.ijbiomac.2016.04.071.
Gumelar MD, Hamzah M, Hidayat AS, Saputra DA, Idvan. 2020. Utilization of chitosan as coating material in making NPK slow-release fertilizer. Macromol. Symp. 391(1):1-4. doi: 10.1002/masy.201900188.
Haleem AM. 2020. Fabrication and characterization for phosphate nanofertilizer through polymer coating technique. Engineering and Technology Journal. 38(1):34-40. doi: 10.30684/etj.v38i1B.576.
Halindra YM, Wardoyo ERP, Linda R. 2017. Perkecambahan benih padi (Oryza sativa L.) lokal asal Kalimantan Barat berdasarkan tingkat salinitas. Protobiont 6(3):295-302. doi: 10.26418/protobiont.v6i3.22498.
Handayani L, Djajakirana G, Darmawan, Munoz CP. 2015. Slow-release fertilizer formulation using acrylic and chitosan coating. J. Trop. Soils. 20(1):37-45. doi: 10.5400/jts.2015.v20i1.37-45.
Hasaneen MNA, Abdel-Aziz HMM, Omer AM. 2016. Effect of foliar application of engineered nanomaterials: carbon nanotubes NPK and chitosan nanoparticles NPK fertilizer on the growth of French bean plant. Biochem. and Biotech. Res. 4(4):68-76.
Henderson DE, Jose S. 2012. Nutrient use efficiency of three fast growing hardwood species across a resource gradient. Open Journal of Forestry. 2(4):187-199. doi: 10.4236/ojf.2012.24023.
IFA [International Fertilizer Association]. 2022. Fertilizer consumption – historical trends by country. Paris (FR): International Fertilizer Association; [accessed 2022 Des 08]. [IFASTAT].
Islam MN, Rahman MM, Mian MJA, Khan MH, Barua R. 2014. Leaching losses of nitrogen, phosphorus and potassium from the sandy loam soil of old Brahmaputra floodplan (AEZ-9) under continuous standing water condition. Bangladesh J. Agril. Res. 39(3):437-446. 10.3329/bjar.v39i3.21987.
ISTA [International Seed Testing Association]. 2014. International Rules for Seed Testing. Switzerland: ISTA.
Jiao X, Maimaitiyiming A, Salahou MK, Liu K, Guo W. 2017. Impact of groundwater level on nitrate nitrogen accumulation in the vadose zone beneath a cotton field. Water. 9(3):1-19. doi: 10.3390/w9030171.
Julian TC, Fukuda H, Bohoshevych IB. 2019. The potential of albasia wood (Albizia falcataria) as Indonesian local wood: fast-growing wood for the use in the construction field. In: Trapani F, Mohareb N, Rosso F, Kolokotsa D, Maruthaveeran S, editor. The 3rd International Conference on Green Urbanism 2019; 2019 Des 11-13; Roma, Italy. Palermo: IEREK.
Khalifa NS, Hasaneen MN. 2018. The effect of chitosan-PMAA-NPK nanofertilizer on Pisum sativum plants. 3 Biotech. 8:193. doi: 10.1007/s13205-018-1221-3.
Krasilnikov P, Taboada MA, Amanullah. Fertilizer use, soil health, and agricultural sustainability. Agriculture 12:462. doi: 10.3390/agriculture12040462.
Leonardi M, Caruso GM, Carraccio SC, Boninelli S, Curcuruto G, Zimbone M, Allegra M, Torrisi B, Ferlito F, Miritello M. 2021. Smart nanocomposites of chitosan/alginate nanoparticles loaded with copper oxide as alternative nanofertilizers. Environ. Sci. Nano. 8:174-187. doi: 10.1039/d0en00797h.
Lubkowski K. 2016. Environmental impact of fertilizer use and slow release of mineral nutrients as a response to this challenge. Polish J. of Chem. Tech. 18(1):72-79. doi: 10.1515/pjct-2016-0012.
Ludemann CI, Gruere A, Heffer P, Dobermann A. 2022. Global data on fertilizer use by crop and by country. Scientific Data. 9:501. doi: 10.1038/s41597-022-01592-z.
Mattjik AA, Sumertajaya IM. 2013. Perancangan Percobaan dengan Aplikasi SAS dan Minitab Jilid 1. Bogor (ID): IPB Press.
Miller JO. Soil pH and nutrient availability. FS-2016; 1054:1-5. doi: 10.13016/M2PN59.
Mo’allim AA, Kamal MR, Muhammed HH, Soom MAM, Zawawi MAM, Wayayok A, Man HC. 2018. Assessment of nutrient leaching in flooded paddy rice field experiment using hydrus-1D. Water. 10(6):1-18. doi: 10.3390/w10060785.
Nuroniah HS, Tata HL, Mawazin, Martini E, Dewi S. 2021. Assessment on the suitability of planting non-native peatlands species Falcataria moluccana (Miq.) Barneby & Grimes in rewetted peatlands. Sustainability. 13(13):1-19. doi: 10.3390/su13137015.
Nguyen VB, Wang SL. 2017. Reclamation of marine chitinous materials for the production of α-glucosidase inhibitors via microbial conversion. Marine Drugs. 15(11):1-11. doi: 10.3390/md15110350.
Pahalvi H, Lone M, Sumaira R, Bisma N, Azra K. 2021. Chemical fertilizers and their impact on soil health. In: Microbiota and biofertilizers, Vol 2. Cham (CH): Springer Cham.
Pereira MRR, Martins CC, de Souza GSF, Martins D. 2012. Influence of water and saline stress on germination of Urochloa decumbens and Urochloa ruziziensis. Bioscience J. 28(4): 537-545.
Plofino DJM, Brutas CCP, Alfafara CG, Maguyon-Detras MC, Migo VP. 2019. Parametric and optimization studies on the entrapment of potassium fertilizer into chitosan-poly(methacrylic acid) carrier via ionic gelation. Di dalam: , editor. The 25th Regional Symposium on Chemical Engineering 2018; 2018 Nov 21-22; Makati, Philippines. Makati: EDP.Prematuri R, Turjaman M, Sato T, Tawaraya K. 2020. Post bauxite mining land soil characteristics and its effects on the growth of Falcataria moluccana (Miq.) Barneby & J. W. Grimes and Albizia saman (Jacq.) Merr. Applied and Environmental Soil Science 2020:1-8. doi: 10.1155/2020/6764380.
Purbajanti ED, Slamet W, Fuskhah E, Rosyida. Effects of organic and inorganic fertilizers on growth, activity of nitrate reductase and chlorophyll contents of peanuts (Arachis hypogaea L.). IOP Conf. Ser.: Earth Environ. Sci. 250. doi: 10.1088/1755-1315/250/1/012048.
Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, Raliya R, Biswas P. 2016. Cu-chitosan nanoparticles mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J. of Agric. and Food Chem. 64(31):6148-6155. doi: 10.1021/acs.jafc.6b02239.
Saharan V, Sharma G, Yadav M, Chodhary MK, Sharma SS, Pal A, Raliya R, Biswas P. 2015. Systhesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. Int. J. of Biological Macromolecules. 75:346-353. doi: 10.1016/j.ijbiomac.2015.01.027.
Sathiyabama M, Parthasarathy R. 2016. Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydrate Polymers. 151:321-325. doi: 10.1016/j.carbpol.2016.05.033.
Sharif R, Mujtaba M, Rahman MU, Shalmani A, Ahmad H, Anwar T, Tianchan D, Wang X. 2018. The multifunctional role of chitosan in horticultural crops; a review. Molecules. 23(4):1-20. doi: 10.3390/molecules23040872.
Sharma G, Kumar A, Devi KA, Prajapati D, Bhagat D, Pal A, Raliya R, Biswas P, Saharan V. 2020. Chitosan nanofertilizer to foster source activity in maize. Int. J. of Biological. Macromolecules. 145:226-234. doi: 10.1016/j.ijbiomac.2019.12.155.
Yunanto T, Mitlohner R, Burger-Arndt R. 2019. Vegetation development and the condition of natural regeneration after coal mine recalamtion in East Kalimantan, Indonesia. In: AB Fourie & M Tibbett, editor. Mine Closure 2019: Proceedings of the 13thInternational Conference on Mine Closure,Perth, Australia.
Authors
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).