Modeling Land Use/Land Cover Change in Berau Pantai Forests, Berau Regency, East Kalimantan Province

Andhi Trisnaputra, Baba Barus, Bambang Hendro Trisasongko

Abstract

Land demands increase with the rise of population and regional development. This results in considerable pressure on forest resources which is characterized by an increasing rate of deforestation. To further explore the impact of deforestation and forest management in regional planning process, this study specifically aimed 1) to identify patterns of land use/land cover changes, 2) to analyze driving factors and 3) to model future land use/land cover. This study employed Landsat imageries to construct land use/land cover maps and their variation across time. Driving factors were analyzed using binary logistic regression. Land use prediction was made through Artificial Neural Network approach. Multitemporal analysis indicated that the research area experienced a decreasing trend of natural forest and shrubs, with substantial extension of existing plantation forests, plantations, agricultural lands and settlements. Indicated driving factors included accessibility, slope class, soil type, forest permit, forest function, RTRW and population density. A forecast in 2030 suggested that natural forests and built-up land would increase from current figures.

References

Alkaf M, Munibah K, Rusdiana O. 2014. Model Spasial Perubahan Penggunaan Lahan di Taman Nasional Gunung Merbabu dan Daerah Penyangganya. Majalah Ilmiah Globe. 16(1):47–54.
Arifin S, Hidayat T. 2014. Kajian Kriteria Standar Pengolahan Klasifikasi Visual Berbasis Data Inderaja Multispektral Untuk Informasi Spasial Penutup Lahan. In: Seminar Nasional Penginderaan Jauh. p. 642–650.
Dehingia H, Das RR, Abdul Rahaman S, Surendra P, Hanjagi AD. 2022. Decadal Transformation of Land Use - Land Cover and Future Spatial Expansion in Bangalore Metropolitan Region, India: Open-Source Geospatial Machine Learning Approach. Int Arch Photogramm Remote Sens Spatial Inf Sci. XLIII-B3-2022:589–595. doi:10.5194/isprs-archives-XLIII-B3-2022-589-2022.
El-Tantawi AM, Bao A, Chang C, Liu Y. 2019. Monitoring and predicting land use/cover changes in the Aksu-Tarim River Basin, Xinjiang-China (1990–2030). Environ Monit Assess. 191(8):480. doi:10.1007/s10661-019-7478-0.
Fariz TR, Nurhidayati E, Damayanti HN, Safitri E. 2020. Komparasi Model Cellular Automata Dalam Memprediksi Perubahan Lahan Sawah Di Kabupaten Purworejo. Jukung. 6(2). doi:10.20527/jukung.v6i2.9259. [accessed 2021 Jul 15]. https://ppjp.ulm.ac.id/journal/index.php/jukung/article/view/9259.
Kasturiyah S, Malik A, Nyompa S. 2021. Pengaruh Alih Fungsi Lahan Tambak ke Sawah Terhadap Pendapatan Keluarga Tani Kecamatan Mattiro Sompe Kabupaten Pinrang. JES. 4(1). doi:10.35580/jes.v4i1.24294. [accessed 2022 May 22]. https://ojs.unm.ac.id/JES/article/view/24294.
Kosasih D, Buce Saleh M, Departemen Manajemen Hutan, Fakultas Kehutanan, Kampus IPB Darmaga Bogor 16680, Budi Prasetyo L, Departemen Konservasi Sumberdaya Hutan dan Ekowisata, Fakultas Kehutanan, Kampus IPB Darmaga Bogor 16680. 2019. Visual and Digital Interpretations for Land Cover Classification in Kuningan District, West Java. JIPI. 24(2):101–108. doi:10.18343/jipi.24.2.101.
Li Y, Liu G. 2017. Characterizing Spatiotemporal Pattern of Land Use Change and Its Driving Force Based on GIS and Landscape Analysis Techniques in Tianjin during 2000–2015. Sustainability. 9(6):894–919. doi:10.3390/su9060894.
Novianti TC. 2021. Klasifikasi Landsat 8 OLI Untuk Tutupan Lahan di Kota Palembang Menggunakan Google Earth Engine. Jurnal Swarnabhumi. 6(1):75–85.
Papilaya PPE. 2013. Pemilihan Kombinasi Band Citra Komposit Landsat 5 TM Untuk Menganalisa Tutupan Lahan Hutan Manggrove di Teluk Dalam Pulau Ambon. Jurnal Ekosains. 2(8):77–89.
Pemerintah Kabupaten Berau. 2016. Buku Rencana Tata Guna Lahan untuk Mendukung Pembangunan Rendah Karbon Kabupaten Berau. Berau: Pokja Ekonomi Hijau Kabupaten Berau.
Rahman MTU, Tabassum F, Rasheduzzaman Md, Saba H, Sarkar L, Ferdous J, Uddin SZ, Zahedul Islam AZM. 2017. Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh. Environ Monit Assess. 189(11):565. doi:10.1007/s10661-017-6272-0.
Ramdani F, Wirasatriya A, Jalil AR. 2021. Monitoring The Sea Surface Temperature and Total Suspended Matter Based on Cloud-Computing Platform of Google Earth Engine and Open-Source Software. In: IOP Conference Series: Earth and Environmental Science. Vol. 750. p. 012041. [accessed 2021 Oct 15]. https://iopscience.iop.org/article/10.1088/1755-1315/750/1/012041.
Riadhi AR, Aidid MK, Ahmar AS. 2020. Analisis Penyebaran Hunian dengan Menggunakan Metode Nearest Neighbor Analysis. j variansi. 2(1):46. doi:10.35580/variansiunm12901.
Rwanga SS, Ndambuki JM. 2017. Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. International Journal of Geosciences. 08(04):611–622. doi:10.4236/ijg.2017.84033.

Authors

Andhi Trisnaputra
trisnaputraandhi@apps.ipb.ac.id (Primary Contact)
Baba Barus
Bambang Hendro Trisasongko
Andhi Trisnaputra, Baba Barus and Bambang Hendro Trisasongko (2023) “Modeling Land Use/Land Cover Change in Berau Pantai Forests, Berau Regency, East Kalimantan Province”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management). Bogor, ID, 13(3), pp. 386-397. doi: 10.29244/jpsl.13.3.386-397.

Article Details

Most read articles by the same author(s)