Abstract
Landslides are natural hazards characterized by rock mass, debris, or soil movement on slopes under gravity. This study employed qualitative and quantitative methods with a spatial approach to analyze primary and secondary data obtained from satellite imagery, observations, and relevant institutions. Data were processed using Global Mapper 20, ArcGIS 10.8.1, and ER Mapper 8.1 software. The results obtained from this study revealed that the majority of the Ambon City area (approximately 51.63 %) was classified as having high landslide vulnerability. Meanwhile, only approximately 16.26% of the total area had very low or low landslide vulnerability. The same pattern is observed in built-up areas, where most landslide vulnerability falls under the high category (Z-4), at approximately 39.01%. In contrast, very low landslide vulnerability (Z-1) accounted for approximately 35.09%, and low vulnerability (Z-2) accounted for approximately 11.89%. The level of landslide vulnerability in the built-up areas also highlights that most of the Ambon City area, with mountainous terrain accounting for approximately 89% of the total area, experienced relatively high occurrences. In response, the government and relevant authorities must undertake careful spatial planning, direct development towards safer places, and implement policies that support sustainable development.
References
Ahmed, K. A., Khan, S., Sultan, M., Bin Nisar, U., Mughal, M. R., & Qureshi, S. N. (2020). Landslides assessment using geophysical and passive radon exhalation detection techniques in Murree Hills, northern Pakistan: Implication for environmental hazard assessment. Journal of Earth System Science, 129(1). https://doi.org/10.1007/s12040-019-1327-y
Akbar, M. A., Utami, S. R., & Agustina, C. (2022). Simulasi Pengukuran Longsor Pada Kemiringan Lereng Dan Ketebalan Seresah Yang Berbeda. Jurnal Tanah Dan Sumberdaya Lahan, 9(2), 321–327. https://doi.org/https://doi.org/10.21776/ub.jtsl.2022.009.2.12
Andriawan, H. A., & Sarya, G. (2014). Intensitas Curah Hujan Memicu Tanah Longsor Dangkal di Desa Wonodadi Kulon. Jurnal Pengabdian LPPM. Surabaya: Fakultas Teknik UNTAG Surabaya, 1(1), 2014. https://core.ac.uk/download/pdf/229332107.pdf
Arsyad, U., Barkey, R. A., Wahyuni, W., & Matandung, K. K. (2018). Karakteristik Tanah Longsor di Daerah Aliran Sungai Tangka. Jurnal Hutan Dan Masyarakat, 10(1), 203–214. https://doi.org/https://doi.org/10.24259/jhm.v0i0.3978
Banuzaki, A. S., & Ayu, A. K. (2021). Integrated Remote Sensing and GIS Analysis for Landslide Susceptibility Assessment along the Trenggalek–Ponorogo Road, East Java Province, Indonesia. Indonesian Association of Geologists Journal, 1(1), 39–48. https://doi.org/10.51835/iagij.2021.1.1.14
Benchelha, S., Chennaoui Aoudjehane, H., Hakdaoui, M., Hamdouni, R. E. L., Mansouri, H., Benchelha, T., Layelmam, M., & Alaoui, M. (2020). Landslide susceptibility mapping in the commune of Oudka, Taounate Province, North Morocco: A comparative analysis of logistic regression, multivariate adaptive regression spline, and artificial neural network models. Environmental and Engineering Geoscience, 66(1), 185–200. https://doi.org/10.2113/EEG-2243
Bhat, I. A., Shafiq, M. ul, Ahmed, P., & Kanth, T. A. (2019). Multi-criteria evaluation for landslide hazard zonation by integrating remote sensing, GIS and field data in North Kashmir Himalayas, J&K, India. Environmental Earth Sciences, 78(20), 1–15. https://doi.org/10.1007/s12665-019-8631-3
BNPB. (2016). Risiko Bencana Indonesia (Disasters Risk of Indonesia). International Journal of Disaster Risk Science, 22. https://doi.org/10.1007/s13753-018-0186-5
Çellek, S. (2020). Effect of the slope angle and its classification on landslide. Natural Hazards and Earth System Sciences Discussions, 1–23. https://doi.org/https://doi.org/10.5194/nhess-2020-87
Cruden, D. (2018). Landslide risk assessment. Routledge.
Darmawan, R. Y., Miswar, D., & Nugraheni, I. L. (2021). Analisis Daerah Rawan Longsor Di Kecamatan Limau Kabupaten Tanggamus. JPG (Jurnal Penelitian Geografi), 9(1). http://jurnal.fkip.unila.ac.id/index.php/JPG/article/view/22624
Devi, S. (2020). Use of Remote Sensing and GIS in Landslide Hazard Analysis. International Journal of Science, Engineering and Technology Research (IJSETR), 9(1). https://d1wqtxts1xzle7.cloudfront.net/63158016/IJSETR
Enigda, E. A., & T, S. (2021). Landslide Evaluation In Parts of Tarmaber District (Debresina), Central Ethiopia; An Expert Evaluation Approach. International Journal of Geoinformatics and Geological Science, 8(1), 15–26. https://doi.org/10.14445/23939206/ijggs-v8i1p103
Fitrianingrum, M. E., & Ruslanjari, D. (2012). Samigaluh Kabupaten Kulonprogo Yogyakarta. 2006, 181–190. https://doi.org/https://doi.org/10.17509/gea.v18i2.8481
Fransiska, L., Tjahjono, B., & Gandasasmita, K. (2017). Studi geomorfologi dan analisis bahaya longsor di Kabupaten Agam, Sumatera Barat. Buletin Tanah Dan Lahan, 1(1), 51–57. https://jurnal.ipb.ac.id/index.php/btanah/article/view/17691
Gemilang, W. A., Husrin, S., Wisha, U. J., & Kusumah, G. (2017). Kerentanan Pesisir Terhadap Bencana Tanah Longsor Di Bungus, Sumatera Barat Dan Sekitarnya Menggunakan Metode Storie. Jurnal Geosaintek, 3(1), 37–44. http://iptek.its.ac.id/index.php/geosaintek/article/view/2954
Gong, Q., Wang, J., Zhou, P., & Guo, M. (2021). A Regional Landslide Stability Analysis Method under the Combined Impact of Rainfall and Vegetation Roots in South China. Advances in Civil Engineering, 2021. https://doi.org/10.1155/2021/5512281
Gorsevski, P. V, Gessler, P. E., Foltz, R. B., & Elliot, W. J. (2006). Spatial prediction of landslide hazard using logistic regression and ROC analysis. Transactions in GIS, 10(3), 395–415. https://doi.org/https://doi.org/10.1111/j.1467-9671.2006.01004.x
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72(1), 272–299. https://doi.org/https://doi.org/10.1016/j.geomorph.2005.06.002
Hadiyanto. (2011). Pengaruh komposisi media organik terhadap pertumbuhan dan hasil tiga varietas jahe (Zingiber officinale Rosc.). http://repository.unej.ac.id/handle/123456789/23499
Handoko, J. P. S., & Ikaputra, I. (2019). Prinsip desain arsitektur bioklimatik pada iklim tropis. Langkau Betang: Jurnal Arsitektur, 6(2), 87–100. https://jurnal.untan.ac.id/index.php/lb/article/view/34791
Harjadi, B., & Paimin, P. (2013). Teknik identifikasi daerah yang berpotensi rawan longsor pada satuan wilayah daerah aliran sungai. Jurnal Penelitian Hutan Dan Konservasi Alam, 10(2), 163–174. https://doi.org/https://doi.org/10.20886/jphka.2013.10.2.163-174
Hasibuan, H. C., & Rahayu, S. (2017). Kesesuaian Lahan Permukiman pada Kawasan Rawan Bencana Tanah Longsor di Kabupaten Temanggung. Teknik PWK (Perencanaan Wilayah Kota), 6(4), 242–256. https://doi.org/https://doi.org/10.14710/tpwk.2017.18072
He, S., Wang, J., & Liu, S. (2020). Rainfall event-duration thresholds for landslide occurrences in China. Water (Switzerland), 12(2). https://doi.org/10.3390/w12020494
Heradian, E. A., & Arman, Y. (2015). Pendugaan Bidang Gelincir di Desa Aruk Kecamatan Sajingan Besar Kabupaten Sambas dengan Menggunakan Metode Tahanan Jenis. Prisma Fisika, III(2), 56–61. https://doi.org/ttp://dx.doi.org/10.26418/pf.v3i2.11878
Hidayat, R., & Zahro, A. A. (2018). Identifikasi Curah Hujan Pemicu Longsor di Daerah Aliran Sungai (DAS) Serayu Hulu-Banjarnegara. http://hdl.handle.net/11617/10336
Hutapea, S. (2020). Biophysical Characteristics of Deli River Watershed to Know Potential Flooding in Medan City, Indonesia. Journal of Rangeland Science, 10(3), 316–327. https://journals.iau.ir/article_672809_3011c0a146017c54e0985dcbe2141186.pdf
Juang, C. S., Stanley, T. A., & Kirschbaum, D. B. (2019). Using citizen science to expand the global map of landslides: Introducing the cooperative open online landslide repository (COOLR). PLoS ONE, 14(7), 1–28. https://doi.org/10.1371/journal.pone.0218657
Lasaiba, M. A. (2012). Perubahan penggunaan lahan di kota Ambon tahun 2002-2009. Disertasi. http://etd.repository.ugm.ac.id/penelitian/detail/54572
Lavan Kumar, Sushanth, Manikanta, M. Z. R. (2021). IRJET- Application of GIS in Investigating the Influence of Rainfall-Runoff on Landslides. Irjet, 8(6), 3646–3653.
Lombardo, L., Opitz, T., & Huser, R. (2019). Numerical Recipes for Landslide Spatial Prediction Using R-INLA. In Spatial Modeling in GIS and R for Earth and Environmental Sciences. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815226-3.00003-x
Martensson, U. (2011). Introduction to Remote Sensing and Geographical Information Systems. Department of Physical Geography and Ecosystems Sciences, 55.
Naryanto, H. S., Soewandita, H., Ganesha, D., Prawiradisastra, F., & Kristijono, A. (2019). Analisis Penyebab Kejadian dan Evaluasi Bencana Tanah Longsor di Desa Banaran, Kecamatan Pulung, Kabupaten Ponorogo, Provinsi Jawa Timur Tanggal 1 April 2017. Jurnal Ilmu Lingkungan, 17(2), 272. https://doi.org/10.14710/jil.17.2.272-282
Nefeslioglu, H. A., Gokceoglu, C., & Sonmez, H. (2008). An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology, 97(3–4), 171–191. https://doi.org/https://doi.org/10.1016/j.enggeo.2008.01.004
Nengsih, S. (2015). Pengaruh Kadar Air Terhadap Kestabilan Lereng (Kampus Politeknik Negeri Padang). Jurnal Ilmiah Rekayasa Sipil, 12(2), 36–45. https://core.ac.uk/download/pdf/268097274.pdf
Nugroho, A. S., Aji, A., & Indrayati, A. (2017). Perubahan Penggunaan Lahan Sawah Menjadi Non Sawah dan Pengaruhnya terhadap Keberlanjutan Sawah Lestari di Kabupaten Klaten. Geo-Image, 6(2), 139–146. https://doi.org/https://doi.org/10.29244/jpsl.8.2.258-263
Pangemanan, V. G. M., Turangan, A. E., & Sompie, O. B. A. (2014). Analisis kestabilan lereng dengan metode Fellenius (Studi kasus: Kawasan Citraland). Jurnal Sipil Statik, 2(1). https://ejournal.unsrat.ac.id/index.php/jss/article/view/3920
Putra, R., Edial, H., & Prarikeslan, W. (2019). Studi Karakteristik Lahan Terhadap Longsor Di Kelurahan Balai Gadang Kecamatan Koto Tangah Kota Padang. Buana, 3(2), 29–34. https://doi.org/https://doi.org/10.24036/student.v3i2.417
Rahman, A. (2010). Penggunaan Sistim Informasi Geografis untuk Pemetaan Kerawanan Longsor di Kabupaten Purworejo. Sumber, 5(2500), 5.
Rienzi, E. A., Fox, J. F., Grove, J. H., & Matocha, C. J. (2013). Interrill erosion in soils with different land uses: The kinetic energy wetting effect on temporal particle size distribution. Catena, 107, 130–138. https://doi.org/https://doi.org/10.1016/j.catena.2013.02.007
Ritung, S., Wahyunto, A. F., & Hidayat, H. (2007). Panduan evaluasi kesesuaian lahan dengan contoh peta arahan penggunaan lahan Kabupaten Aceh Barat. Balai Penelitian Tanah Dan World Agroforestry Centre (ICRAF), Bogor, Indonesia, 45. https://www.worldagroforestry.org/publication/panduan-evaluasi-kesesuaian-lahan
Rompon, M. S., & Almulqu, A. (2018). Identifikasi Dan Pemetaan Daerah Bencana Rawan Longsor Di Kecamatan Amarasi Barat Dengan Menggunakan Arc View Gis. Partner, 23(2), 810–821.
Shahabi, H., Keihanfard, S., Ahmad, B. Bin, & Amiri, M. J. T. (2014). Evaluating Boolean, AHP and WLC methods for the selection of waste landfill sites using GIS and satellite images. Environmental Earth Sciences, 71(9), 4221–4233. https://doi.org/https://doi.org/10.1007/s12665-013-2816-y
Singh, J. P. (2013). Predictive Validity Performance Indicators in Violence Risk Assessment: A Methodological Primer. Behavioral Sciences & the Law, 31(1), 8–22. https://doi.org/https://doi.org/10.1002/bsl.2052
Soewandita, H. (2018). Analisis Kawasan Rawan Longsor Dan Keterkaitannya Terhadap Kualitas Tanah Dan Penggunaan Lahan (Kasus Di Kawasan Agribisnis Juhut Kabupaten Pandeglang). Jurnal Alami : Jurnal Teknologi Reduksi Risiko Bencana, 2(1), 27. https://doi.org/10.29122/alami.v2i1.2826
Suwarsito, S., Afan, I., & Suwarno, S. (2020). Analisis Hubungan Kerawanan Longsor Lahan dengan Penggunaan Lahan di Sub-Das Kali Arus Kabupaten Banyumas. Sainteks, 16(2), 129–135. https://doi.org/10.30595/st.v16i2.7130
Tewari, N. K., & Misra, A. K. (2019). Landslide vulnerability assessment in Gangotri valley glacier Himalaya through GIS and remote sensing techniques. Applied Water Science, 9(4), 1–10. https://doi.org/10.1007/s13201-019-0992-y
Tran, T. H., Dam, N. D., Jalal, F. E., Al-Ansari, N., Ho, L. S., Phong, T. Van, Iqbal, M., Le, H. Van, Nguyen, H. B. T., Prakash, I., & Pham, B. T. (2021). GIS-Based Soft Computing Models for Landslide Susceptibility Mapping: A Case Study of Pithoragarh District, Uttarakhand State, India. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/9914650
Uvaraj, S., & Neelakantan, R. (2018). Fuzzy logic approach for landslide hazard zonation mapping using GIS: a case study of Nilgiris. Modeling Earth Systems and Environment, 4(2), 685–698. https://doi.org/10.1007/s40808-018-0447-8
Van Westen, C. J. (1993). Remote sensing and geographic information systems for geologic hazard mitigation. ITC Journal, 393–395. ttps://www.researchgate.net/profile/Cj-Westen/publication/209805617
Varnes, D. J. (1978). Slope movement types and processes. Special Report, 176, 11–33. https://www.researchgate.net/profile/Ahmad
Wang, Q., & Li, W. (2017). A GIS-based comparative evaluation of analytical hierarchy process and frequency ratio models for landslide susceptibility mapping A GIS-based comparative evaluation of analytical. Physical Geography, 3646(March), 0. https://doi.org/10.1080/02723646.2017.1294522
Yadav, K. K., Gupta, N., & Kumar, V. (2016). 2016 National Conference. American String Teacher, 66(1), 53–60. https://doi.org/10.1177/000313131606600112
Authors
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).