Phytoplankton response to differences in light and the addition of phosphorus in Lake Cikaret

Fachmijany Sulawesty, Sata Yoshida Sri Rahayu, Yustiawati, Tjandra Chrismada

Abstract

The composition and abundance of phytoplankton in the waters are strongly influenced by the supply of phosphorus and light intensity, so observations were made to obtain the optimum phosphorus concentration with a certain level of light which caused the high abundance of phytoplankton in Lake Cikaret. A 2 x 2 factorial design was used to see the effect of three levels of phosphorus (0.03 mg/L, 0.09 mg/L, and 0.15 mg/L) and three levels of light (30%, 70% and 100% luminance). on the abundance and composition of phytoplankton. The parameters observed were the abundance and composition of phytoplankton, dissolved oxygen, pH, temperature, turbidity, light intensity, and total phosphorus. The results showed that the addition of phosphorus in the waters increased the abundance of phytoplankton. Chlorophyta was high in the first week, then Bacillariophyta and Chlorophyta were high in the second week until the end of the observation. Synedra sp. (Bacillariophyta) tended to be high in abundance at a low light intensity, while Mougeotia sp. (Chlorophyta) tend to be high at all light intensities.

References

American Public Health Association (APHA). 2017. Standard Methods for Examination of Water and Wastewater. 23rd edition, Washington DC, USA, 175 p.
Bellinger EG, Sigee DC. (2010). Freshwater Algae: Identification and Use as Bioindictors. John Wiley and Sons, Ltd. Oxford, 271 p.
Cymbola J, Ogdahl M, Steinman AD. 2008. Phytoplankton response to light and internal phosphorus loading from sediment release. Freshw Biol. 53(12):2530–42.
Lichment, E. 1998. Population and community responses of phytoplankton to fluctuating light. Oecologia 117: 247-257.
Lv J, Wu H, Chen M. 2011. Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica. 41: 48-56.
Marzetz V, Spijkerman E, Striebel M, Wacker A. 2020. Phytoplankton Community Responses to Interactions Between Light Intensity, Light Variations, and Phosphorus Supply. Front Environ Sci. 8:1–11.
Mizuno T. (1979). Illustration of the Freshwater Plankton of Japan. Hoikusha Publishing Co. Ltd. 313 p.
Pratiwi NTM, Hariyadi S, Ayu IP, Iswantari A, Amalia FJ. 2013. Komposisi fitoplankton dan status kesuburan perairan Danau Lido, Bogor-Jawa Barat melalui beberapa pendekatan. J Biol Indones. 9(1):111–20.
Prescott GW. (1951). Algae of the Western Great Lakes Area. Cranbrook Institute of Science. Bulletin No. 31, 946 p.
Scott AM, Prescott GW. 1961. Indonesian Desmids. Hydrobiologia. 132 p.
Soliha E, Rahayu SYS, Triastinurmiatiningsih. 2016. Kualitas air dan keanekaragman plankton di Danau Cikaret, Cibinong, Bogor. Ekologia. 16(2):1–10.
Sudarso J, Suryono T, Yoga GP. 2016. Pengaruh kontaminasi logam berat di sedimen pada komunitas makrozoobentos di beberapa situ dan waduk di Jawa Barat. . Jurnal Manusia dan Lingkungan. 23(1), 20. https://doi.org/10.22146/jml.18769.
Sulastri, Sulawesty F., Dwiastuti. 1994. Tingkat kualitas air dan tingkat trofik perairan Situ Cikaret, Kabupaten Bogor, Jawa Barat. Prosiding Proyek Penelitian dan Pengembangan Sumberdaya Perairan Darat, Pusat Penelitian Limnologi, LIPI. Bogor. p. 86-95.
Sulastri, Sulawesty F, Nomosatryo N. 2015. Long term monitoring of water quality and phytoplankton changes in Lake Maninjau, West Sumatra, Indonesia. Oseanologi dan Limnologi di Indonesia. 41(3): 339-353
Sulastri, Nomosatryo S, Sulawesty F. 2016. Keterkaitan unsur hara dan biomasa fitoplankton (chlorofil-a) di Danau Maninjau, Sumatera Barat. Prosiding Ilmiah Pertemuan Tahunan Masyarakat Limnologi Indonesia 2015. p. 129-141
Sulawesty F. 1996. Komposisi jenis dan kebiasaan makan ikan – ikan pelagis di Situ Cikaret. Terubuk, Berkala Perikanan, XXI(65): 65 – 74.
Supriyadi A, Syaufina L, Ichwandi I. 2015. Evaluasi Kebijakan Pengelolaan Situ Cikaret, Kabupaten Bogor. Limnotek. 22(1):52–63.
Tapolczai K, Anneville O, Padisak J, Salmaso N, Morabito G, Zohary T, Tadonleke RD, Rimet F. 2014. Occurrence and mass development of Mougeotia spp. (Zygnemataceae) in large, deep lakes. Hydrobiologia 741. DOI 10.1007/s10750-014-2086-z
Taylor JC, Harding WR, Archibald CGM. 2007. An Illustrated Guide to Some Common Diatom Species from South Africa. WRC Report TT 282/07. Pretoria, South Africa. 178 plate
USEPA. 2003. Standard operating procedure for phytoplankton analysis. In: Sampling and Analytical Procedures for GLNPO’s Open Lake Water Quality Survey of the Great Lakes, Great Lakes National Program Office, Chicago, IL. EPA-905-R-05-001.
Wetzel RG. 2001. Limnology, Lake, and River Ecosystem. 3rd. Academic Press, New York.
Widiastuti L, Tohari, dan Sulistyaningsih E. 2004. Pengaruh intensitas cahaya dan kadar daminisida terhadap iklim mikro dan pertumbuhan tanaman krisan dalam pot. Ilmu Pertanian. 11(2): 35-42.
Wieliczko AR, Rodrigues LR, Marques DM and Crossetti LO. 2020. Phytoplankton structure is more influenced by nutrient enrichment than by temperature increase: an experimental approach upon the global changes in a shallow subtropical lake. Limnetica 39(1): 405-418. DOI: 10.23818/limn.39.26
Yuan Y, Jianga M, Zhub X, Yuc H, Otted MI. 2021. Interactions between Fe and light strongly affect phytoplankton communities in a eutrophic lake. Ecological Indicators. 126: 1-14. 107664.

Authors

Fachmijany Sulawesty
fachmi@limnologi.lipi.go.id (Primary Contact)
Sata Yoshida Sri Rahayu
Yustiawati
Tjandra Chrismada
SulawestyF., RahayuS. Y. S., Yustiawati and ChrismadaT. (2023) “Phytoplankton response to differences in light and the addition of phosphorus in Lake Cikaret”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management). Bogor, ID, 13(1), pp. 27-36. doi: 10.29244/jpsl.13.1.27-36.

Article Details