The use of durian seeds (Durio zibethinus Murr) as flour products from Tolitoli and Donggala Regencies
Abstract
Durian seeds (Durio zibethinus murr) have gotten less attention in the past. Therefore, it is necessary to treated them into culinary items like flour. The durian used in flour production was a local durian from Tolitoli and Donggala Regencies. As a result, a study was conducted to determine the quantities of carbohydrates, lipids, proteins, manganese (Mn), and zinc (Zn) in durian seeds flour. The composition of durian seeds flour from Tolitoli regency obtained was 59.2% for carbohydrate, 3.24% of lipids, 8.75% of proteins, 10.1 mg/kg of Mn, and 6.30 mg/kg of Zn. While durian seed flour from Donggala Regency obtained was 41.76% of carbohydrate, 3.24% of lipids, 10.93% of protein, 7.1 mg/kg of Mn, and 1.22 mg/kg of Zn. According to these results and the National Standardization Agency of Indonesia, durian seed flour can be used as an alternative local food ingredient to fulfil the body's demands for carbohydrates, lipids, proteins, manganese, and zinc. Furthermore, durian seed flour, when processed as a food ingredient, can be used as a replacement for wheat flour
References
2. Amid, B. T., & Mirhosseini, H. (2012). Optimisation of aqueous extraction of gum from durian (Durio zibethinus) seed: A potential, low-cost source of hydrocolloid. Food chemistry, 132(3), 1258-1268.
3. Purnomo, A., Yudiantoro, Y. A. W., Putro, J. N., Nugraha, A. T., Irawaty, W., & Ismadji, S. (2016). Subcritical water hydrolysis of durian seeds waste for bioethanol production. International Journal of Industrial Chemistry, 7(1), 29-37.
4. Djaeni, M. & Prasetyaningrum, A. (2010). Feasibility of Durian Seeds as Alternative Food Ingredients: Nutritional Aspects and Techno-Economic. Jurnal Teknik Kimia. 4(2), 37-45.
5. Srianta, I., Hendrawan, B., Kusumawati, N., & Blanc, P. J. (2012). Study on durian seed as a new substrate for angkak production. International Food Research Journal, 19(3), 941.
6. Cornelia, M., Siratantri, T., & Prawita, R. (2015). The utilization of extract durian (Durio zibethinus L.) seed gum as an emulsifier in vegan mayonnaise. Procedia Food Science, 3, 1-18.
7. Seer, Q. H., Nandong, J., & Shanon, T. (2017, June). Experimental study of bioethanol production using mixed cassava and durian seed. In IOP Conference Series: Materials Science and Engineering (Vol. 206, No. 1, p. 012020). IOP Publishing.
8. Zebua, N. F., Putra, E. D., Harahap, U. R. I. P., & Kaban, J. A. M. A. R. A. N. (2018). Durian Seed Utilization as A Base Material of Topical Gel. Asian Journal of Pharmaceutical and Clinical Research, 11(1), 174-177.
9. Ismail, A., Sudrajat, H., & Jumbianti, D. (2010). Activated carbon from durian seed by H3PO4 activation: preparation and pore structure characterization. Indonesian Journal of Chemistry, 10(1), 36-40.
10. Ramluckan, K., Moodley, K. G., & Bux, F. (2014). An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel, 116, 103-108.
11. Chromý, V., Vinklárková, B., Šprongl, L., & Bittová, M. (2015). The Kjeldahl method as a primary reference procedure for total protein in certified reference materials used in clinical chemistry. I. A review of Kjeldahl methods adopted by laboratory medicine. Critical reviews in analytical chemistry, 45(2), 106-111.
12. Jacob, A. G., Etong, D. I., & Tijjani, A. (2015). Proximate, mineral and anti-nutritional compositions of melon (Citrullus lanatus) seeds. British Journal of Research, 2(5), 142-151.
13. Nascentes, C. C., Kamogawa, M. Y., Fernandes, K. G., Arruda, M. A., Nogueira, A. R. A., & Nóbrega, J. A. (2005). Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 60(5), 749-753.
14. Fitra, M. A., Thomy, Z., Harnelly, E., & Kusuma, H. I. (2020). The potency of mushrooms as food alternative in the forest park of Pocut Meurah Intan, Saree, Aceh Besar. In IOP Conference Series: Earth and Environmental Science (Vol. 425, No. 1, p. 012058). IOP Publishing.
15. Kurnia, N., Liliasari, Adawiyah, D. R., & Supriyanti, F. M. T. (2021, March). Determination of carbohydrates content in red dragon fruit for food chemistry laboratory. In AIP Conference Proceedings (Vol. 2330, No. 1, p. 020032). AIP Publishing LLC.
16. Yang, W., Gao, X., & Wang, P. (2000). The effect of manganese on the metabolism of several necessary elements necessary in human body [J]. Chinese Occupational Medicine, 1.
17. Horning, K. J., Caito, S. W., Tipps, K. G., Bowman, A. B., & Aschner, M. (2015). Manganese is essential for neuronal health. Annual review of nutrition, 35, 71-108.
18. Hambidge, M. (2000). Human zinc deficiency. The Journal of nutrition, 130(5), 1344S-1349S.
19. Das, S., & Green, A. (2013). Importance of zinc in crops and human health. Journal of Science and Agricultural technology, 11, 1-7.
Authors
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).