Gaining Aquaculture Blue Growth with Low Carbon Emission Shrimp Farming Technology
Abstract
Carbon emissions and their relation to shrimp farming activities getting more attention by researchers and environmentalists. Emissions of carbon and other greenhouse gases are concluded as drivers of climate change due to global warming. On the contrary, climate change is proven to determine the continuity and sustainability of shrimp farming activities. The dynamics of carbon and profitability are different for the three cultivation technologies (extensive, semi-intensive, and intensive), it caused by differences in the number and types of production inputs, and facilities and infrastructure, and also differences in productivity. This study aims to formulate the blue growth of aquaculture areas in the coastal area of Karawang Regency-West Java related to carbon emission within the DPSIR framework and use trade off analyses to obtain shrimp farming technologies alternative that are low in carbon emissions. Our conclusion to be able to reduce the carbon emissions, and increase the carbon sequestration and stock as effort for shrimp farming blue growth through optimize the spatial use supervision and increase the productivity of shrimp farming. The lowest carbon emission of shrimp farming technology are semi-intensive, intensive and extensive, respectively
References
Ahmed N, Bunting SW, Glaser M, Flaherty MS, Diana JS. 2017. Can greening of aquaculture sequester blue carbon? Ambio. 46:468–477. doi:10.1007/s13280-016-0849-7.
Ahmed N, Cheung WWL, Thompson S, Glaser M. 2017. Solutions to blue carbon emissions: Shrimp cultivation, mangrove deforestation and climate change in coastal Bangladesh. Mar. Policy. 82:68–75. doi:10.1016/j.marpol.2017.05.007.
Ahmed N, Diana JS. 2015. Threatening “white gold”: Impacts of climate change on shrimp farming in coastal Bangladesh. Ocean Coastal Management. 114:42–52. doi:10.1016/j.ocecoaman.2015.06.008.
Ahmed N, Thompson S. 2019. The blue dimensions of aquaculture: A global synthesis. Sci. Total Environ. 652:851–861. doi:10.1016/j.scitotenv.2018.10.163.
Aliah RS. 2013. Evaluasi kondisi lingkungan perairan Pantai Utara Karawang untuk mendukung pengembangan perikanan budidaya. Jurnal Teknologi Lingkungan. 14 (2): 67-73.
Alongi DM. 2018. Blue Carbon: coastal sequestration for climate change mitigation. Cham: Springer. pp 96. doi: 10.1007/978-3-319-91698-9.
Amrial Y, Effendi H, Damar A. 2015. Pengelolaan ekosistem mangrove berbasis Silvofishery di Kecamatan Cibuaya, Kabupaten Karawang. Jurnal Kebijakan Sosial Ekonomi Kelautan dan Perikanan. 5 (1): 59-70.
Bournazel J, Kumara MP, Jayatissa LP, Viergever K, Morel V, Huxham M. 2015. The impacts of shrimp farming on land-use and carbon storage around Puttalam lagoon, Sri Lanka. Ocean Coastal Management. 113:18–28. doi:10.1016/j.ocecoaman.2015.05.009.
Brown K, Adger WN, Tompkins E, Bacon P, Shim D, Young K. 2001a. Trade-off analysis for marine protected area management. Ecological Economics. 3: 417-434. doi: 10.1016/S0921-8009(00)00293-7.
Brown K, Tompkins E, Adger WN. 2001b. Trade-off analysis for participatory coastal zone decision-making. 1st ed. Norwich: University of East Anglia.
Burford M. 1997. Phytoplankton dynamics in shrimp ponds. Aquaculture Research. 28:351–360. doi:10.1111/j.1365-2109.1997.tb01052.x.
Cooper P. 2013. Socio-ecological accounting: DPSWR, a modified DPSIR framework, and its application to marine ecosystems. Ecological Economic. 94: 106-115. doi: 10.1016/j.ecolecon.2013.07.010.
Dahuri R, Rais J, Ginting SP, Sitepu MJ. 1996. Pengelolaan Sumber Daya Wilayah Pesisir dan Lautan secara Terpadu. PT. Pradnya Paramita. Jakarta. pp 305.
Dewata AP. 2013. Analisis potensi gas rumah kaca (CH4 dan CO2 ) pada usaha tambak udang intensif dan persepsi masyarakat dalam pengelolaannya di Kabupaten Tulang Bawang, Provinsi Lampung. Master Thesis. Institut Pertanian Bogor.
Dinas Perikanan. 2018. Statistik Perikanan Budidaya Kabupaten Karawang. Pemerintah Kabupaten Karawang. [Indonesian]
Hill R, Bellgrove A, Macreadie PI, Petrou K, Beardall J, Steven A, Ralph PJ. 2015. Can macroalgae contribute to blue carbon? An Australian perspective. Limnol. Oceanogr. 60:1689–1706. doi:10.1002/lno.10128.
Hilmi E, Parengrengi, Vikaliana R, Kusmana C, Iskandar, Sari LK, Setijanto. 2017. The carbon conservation of mangrove ecosystem applied REDD program. Regional Studies Marine Science. 16:152–161. doi:10.1016/j.rsma.2017.08.005.
Kauffman JB, Arifanti VB, Trejo HH, Garcia MCJ, Norflok J, Cifuentes M, Hadriyanto D, Murdiyarso D. 2017. The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Front Ecol. Environ. 1-6. doi:10.1002/fee.1482.
Kauffman JB, Heider C, Norflok J, Payton F. 2014. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Rep. Ecol. Apl. 24:518–527. doi:10.1890/13-0640.1.
Kauffman JB, Hernandez TH, Garcia CJM, Heider C, Contreras WM. 2015. Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetland Ecological Management. 24: 203–216. doi:10.1007/s11273-015-9453-z.
Komarudin RA. 2013. Model perubahan penggunaan lahan pesisir untuk mendukung rencana tata ruang wilayah Kabupaten Karawang. Master Tesis. Institut Pertanian Bogor.[Indonesian]
Liu H, Ren H, Hui D, Wang W, Liao B, Cao Q. 2014. Carbon stocks and potential carbon storage in the mangrove forests of China. Journal Environmental Management. 133: 86–93. doi:10.1016/j.jenvman.2013.11.037.
Martin DM, Piscopo AN, Chintala M, Gleason TR, Berry W. 2018. Developing qualitative ecosystem service relationships with the Driver- Pressure-State-Impact-Response framework: A case study on Cape Cod, Massachusetts. Ecological Indicators. 84 (2018): 404-415. doi: 10.1016/j.ecolind.2017.08.047.
Mitra A, Zaman S. 2015. Blue Carbon Reservoir of the Blue Planet. New Delhi: Springer.
Nellemann C, Corcoran E, Duarte CM, Valdés L, De Young C, Fonseca L, Grimsditch G. 2009. Blue carbon: The role of healthy oceans in binding carbon. A Rapid Response Assessment. Norway.
Nopiana M, Yulianda F, Sulistiono, Fahrudin A. 2020. Condition of shore and mangrove area in the coastal area of Karawang Regency, Indonesia. AACL Bioflux. 13(2): 553-569.
Noviyanti E, Rohmat D, Nandi. 2016. Pengaruh Usaha Budidaya Tambak terhadap Kondisi Sosial Ekonomi Petani Tambak di Kecamatan Cibuaya, Kabupaten Karawang. Antalogi Pendidikan Geografi. 4 (2): 1-14.
Pranoto AK, Haryani EBS, Amdani, Tanjung A. 2019. The impact of coastal degradation on mangrove ecosystem in North Karawang coastal area. IOP Conf. Series: Earth and Environ. Sci. 278 012061 doi:10.1088/1755-1315/278/1/012061.
Rahman, Effendi H, Rusmana I. 2017. Estimasi Stok dan Serapan karbon pada Mangrove di Sungai Tallo, Makassar Stock Estimation and Carbon Absorption of Mangrove in Tallo River, Makassar. Jurnal Ilmu Kehutanan. II: 19–28. doi:10.1111/gcb.13051.
Rifqi M, Widigdo B, Mashar A, Wardiatno Y. 2020. CO2 and CH4 flux from the water-air interface of three shrimp culture technologies. AACL Bioflux. 13(2):605-617.
Roscoe JT. 1975. Fundamental research statistics for the behavioral sciences (2nd ed.). Holt, Rinehart and Winston. New York USA. 483 pp.
Semeoshenkova V, Newton A, Rojas M, Piccolo MC, Bustos ML, Cisneros MAH, Berninsone LG. 2016. A combined DPSIR and SAF approach for the adaptive management of beach erosion in Monte Hermoso and Pehuen Co (Argentina). Ocean and Coastal Management. 1-11 doi: 10.1016/j.ocecoaman.2016.04.015.
Sidik F, Lovelock CE. 2013. CO2 efflux from shrimp ponds in Indonesia. PLoS One. 8:2-6.
Siikamäki J, Sanchirico JN, Jardin, S, McLaughlin D, Morris D. 2013. Blue carbon: coastal ecosystems, their carbon storage, and potential for reducing emissions. Environ. Sci. Policy Sustain. Dev. 55:14–29. doi:10.1080/00139157.2013.843981
Sugiyono. 2008. Metode Penelitian Kuantitatif Kualitatif dan R&D (edisi pertama). Alfabeta. Bandung.
Svarstad H, Petersen LK, Rothman D, Siepel H, Wätzold F. 2008. Discursive biases of the environmental research framework DPSIR. Land Use Policy. 25: 116–25.
Valenti WC, Kimpara JM, Preto BL, Moraes-Valenti P. 2018. Indicators of sustainability to assess aquaculture systems. Ecological Indicators. 88:402-413. doi:10.1016/j.ecolind.2017.12.068.
van Huylenbroeck G. 1995. Multicriteria analysis of the conflicts between rural development scenarios in the Gordon Districts, Scotland. Journal of Environmental Planning and Management. 38(3): 393-407. doi: 10.1080/09640569512931.
Widigdo B, Rifqi M, Mashar A, Nazar F, Wardiatno Y. 2020. The contribution of phytoplankton in the carbon adsorption and stock during shrimp culture in ponds. Biodiversitas. 21(11): 5170-5177. doi: 10.13057/biodiv/d211123.
Authors
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).