The Life Cycle Assessment of Cement Product with Alternative Fuels Usage in Indonesia

Arief Setiawan, Moh. Yanuar Jarwadi Purwanto, Kiman Siregar


The aim of this study was performed a life cycle assessment in cement production. In order to gain improvement on environmental impact therefore the assessment should find the hotspots. The improvement is expected to find better fuel composition to reduce its impact by using variant of alternative fuels. The scope of study covers mining extraction to processing of cement (cradle to gate). The study results showed the value of 1 ton of cement : global warming potential impacts is 760.11 kg CO2-eq, acidification potential 1.32 kg SO2-eq, photochemical oxidant creation potential 0.0508 kg C2H4-eq, human toxicity potential 123.97 kg 1.4-DB-eq and abiotic depletion potential 2181.75 MJ. The data show that the highest contributor of impact is kiln unit. The energy used in kiln process unit contributes 92.46% of the total energy intensity in the cement production process. The results show that the energy required to produce 1-ton cement product is 3.27 GJ with the kiln process unit having the highest energy used contribution with a value of 3.03 GJ / ton product. The study has comprised four scenarios in order to acknowledge the best recommended practice of fuel compositions in the hotspots area.


Aitor et al. 2015. Impact Assessment Methods in Life Cycle Assessment and Their Impact Categories. GreenDelta GmbH, Müllerstrasse 135, 13349 Berlin, Germany.
Asosiasi Semen Indonesia (ASI). Cement industry in Indonesia. 2018. Diunduh pada 3 Januari 2021. Dapat diunduh pada:
Chen C, Habert G, Bouzidi Y, Jullien A. 2010. Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. Journal of Cleaner Production, 18(5), 478–485.
[CSI]. Cement Sustainability Initiative. 2014. Guidelines for Co-processing Fuels and Raw Materials in Cement Manufacturing (Version 2). Copyright: © WBCSD.
Damayanti, R. 2018. Abu Batu Bara dan Pemanfaatanya: Tinjauan Teknis Karakteristik Secara Kimia dan Toksikologinya. Jurnal Puslitbang Teknologi Mineral dan Batu bara volume 14, no 3, September 2018: 213 – 231. Bandung.
David, F. 2009. Manajemen Strategis: Konsep. Edisi 13. Jakarta (ID): Salemba Empat.
Giddings, B., Howood, B., O’brien, G. 2002. Environment, Economy and Society: fitting them together into sustainable development. Sustainable Development 10, 4, pp. 187 – 196.
Gabel K., Forsberg P, Tillman AM. 2004. The Design and Building of a Life Cycle-Based Process Model for Simulating Environmental Performance, Product Performance and Cost in Cement Manufacturing. Environmental Systems Analysis. Chalmers University of Technology, S-412 96 Gothenburg, Sweden.
Hacatoglu, K. 2014. A New Model to Assess the Environmental Impact and Sustainability of Energy Systems. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology.
Heijungs, R. 1995. A Proposal for The Definition of Resources Equivalency Factors for Use in Product Life Cycle Assessment. Centre of Environment Science, Leiden University. Netherland.
Huntzinger, D. N., & Eatmon, T. D. 2009. A Life Cycle Assessment of Portland Cement Manufacturing: Comparing the Traditional Process with Alternative Technologies. Journal of Cleaner Production, 17(7), 668-675.
[IEA]. 2010. Energy Tehcnology System Analysis Program. Dapat diunduh di:
[ISO] International Standard Organization. 2016. ISO 14040 enviromental management – life cycle asessment – principles and framework. Geneva (CH): ISO.
[Kemenperin] Kementrian Perindustrian. 2012. Peta Panduan Pengurangan Emisi CO2 Industri Semen di Indonesia nomor 12/m-ind/per/1/2012.
Lehne J, Preston F. 2018. Making Concrete Change Innovation in Low-carbon Cement and Concrete. The Royal Institute of International Affairs Chatham House 10 St James’s Square.
Nadal, M. Schuhmacher, J.L. Domingo. 2009. Cost Benefit Analysis of Using Sewage Sludge as Alternative Fuel in a Cement Plant: a Case Study Environ. Sci. Pollut. Res., 16 (2009), pp. 322-328.
Nugraha, AZ. 2017. Life Cycle Assesment (LCA) Produk Semen di PT. Indocement Tunggal Prakarsa. [Tesis]. Sekolah Pascasarjana Institut Pertanian Bogor.
Oss, H. G., & Padovani, A. C. 2003. Cement Manufacture and the Environment Part II: Environmental Challenges and Opportunities. Journal of Industrial Ecology, 7(1), 93–126. doi:10.1162/108819803766729212
Octova, A. 2019. Analisis Konsumsi Bahan Bakar Dump Truck Nissan CWM33o pada Penambangan Batu Bara PT. Nan Riang. [Tesis]. Jurusan Teknik Pertambangan. Universitas Negeri Padang.
Paramita, W. 2018. Sustainability of Refuse Derived Fuel Potential from Municipal Solid Waste for Cement’s Alternative Fuel in Indonesia (A Case at Jeruklegi Landfill, in Cilacap). [Tesis]. Graduate School of Environmental Science, University of Indonesia. Jakarta Pusat 10430, Indonesia.
Qola, AD. 2020. Life Cycle Assesment (LCA) Cradle to Gate Produksi Batu Bara di PT. XYZ Kalimantan Selatan. [Tesis]. Sekolah Pascasarjana, Pengelolaan Sumber Daya Alam dan Lingkungan, IPB University.
Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Pennington, D. W. 2004. Life cycle assessment. Environment International, 30(5), 701–720. doi:10.1016/j.envint.2003.11.005.
Yunianto, IT. 2013. Freight Calculation Model: A Case Study of Coal Distribution. [Tesis]. Department of Marine Transport Engineering, Faculty of Marine Technology, Sepuluh Nopember Institute of Technology, Indonesia.
Zhang, D. D., Lee, H. F., Wang, C., Li, B., Pei, Q., Zhang, J., & An, Y. 2011. The causality analysis of climate change and large-scale human crisis.


Arief Setiawan (Primary Contact)
Moh. Yanuar Jarwadi Purwanto
Kiman Siregar
SetiawanA., PurwantoM. Y. J. and SiregarK. (2022) “The Life Cycle Assessment of Cement Product with Alternative Fuels Usage in Indonesia”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management). Bogor, ID, 11(3), pp. 474-489. doi: 10.29244/jpsl.11.3.474-489.

Article Details