The Contributions of Soil Biochemical Properties as Determinant of Pineapple (Ananas comosus [L.] Merr.) Plantation LandProductivity in Central Lampung Regency
Abstract
One of the management challenges in pineapple cultivation at plantation scale is the still occurrence of disparity in land productivity across the cultivated area although the cropping practices have been implemented for many years. In the case of a pineapple plantation in Central Lampung Regency, contribution of soil biochemical properties in terms of various soil enzyme activities as a determinant factor of land productivity has never been elaborated. This research was aimed to study the relationships among biochemical and other soil properties with land productivity or pineapple yield at plantation scale. Rhizosphere soil-composite samples were taken purposively from 4 stations at the largest Indonesian pineapple plantation representing blocks with high and low yield and growth at vegetative and generative phase. Relationships amongst the studied parameters were evaluated using PCA and linear multiple regression analysis. The results showed significant contributions of the rhizosphere soil properties on the pineapple yield according to equation: Yield = 64.895 – 6.546 PCA1 +13.057 PCA2 – 7.722 PCA4 (R2= 0.612), where PCA1 consisted of soil available-P, available-K, and CEC; PCA2 was of soil base saturation, total microbe population, enzyme activities of cellulase and invertase, while PCA4 was of soil organic C, silt fraction, and phosphatase activities.
References
Adetunji AT, Lewu FB, Mulidzi R, Ncube B. 2017. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J Soil Sci Plant Nutr. 17(3):794–807. http://dx.doi.org/ 10.4067/S0718-95162017000300018
Almeida RF, Naves ER, Mota RP. 2015. Soil quality: Enzymatic activity of soil β-glucosidase. Glob J Agric Res Rev. 3(2):146–150. DOI: 10.11598/btb.2018.25.3.862
Askin T & Kizilkaya. 2005. The spasial variability of urease acrtivity of surface agricultural soils within an urban area. J Cent Eur Agric.6(2):161-166.
BPS [Badan Pusat Statistik] Kabupaten Lampung Tengah. 2017. Kabupaten Lampung Tengah Dalam Angka 2017. Bandar Lampung (ID): BPS Kabupaten Lampung Tengah. Kabupaten Lampung Tengah.
Balai Penelitian Tanah. 2005. Petunjuk Teknis Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. Bogor (ID): Balai Penelitian dan Pengembangan Pertanian, Departemen Pertanian. 136 pp.
Boraste A, Vamsi KK, Jhadav A, Khairnar Y, Gupta N, Trivedi S, Patil P, Gupta G, Gupta M, Mujapara AK, Joshi B. 2009. Biofertilizer: A novel tool for agricultuture. Int J microbiol Res. 1(2): 23-31.
Dhungel J, Bhattarai S, Midmore D. 2017. Aerated water irrigation (oxygation) benefits to pineapple yield, water use efficiency and crop helath. Adv Hort Sci. 26(1): 3-16. https://doi.org/10.13128/ahs-12746
Difonzo G, Vollmer K, Caponio F, Pasqualone A, Carle R, Steingass CB. 2019. Characterisation and classification of pineapple (Ananas comosus [L.] Merr.) juice from pulp and peel. Food Control. 96:260–270. https://doi.org/10.1016/j.foodcont.2018.09.015
Ferreira JF, Santana JCC, Tambourgi EB. 2011. The effect of pH on bromelain partition from Ananas comosus by PEG4000/Phosphate ATPS. Brazil Arch Biol Technol. 54(1):125–132. https://doi.org/10.1590/ S1516-89132011000100017
Fitra S, Prijono S, Maswar dkk. 2019. Pengaruh pemupukan pada lahan gambut terhadap karakteristik tanah, emisi CO2 dan produktivitas tanaman karet. JTSL. 6(1):1145–1156. http://dx.doi.org/10.21776/ ub.jtsl.2019.006.1.13
Frankenberger WT, Dick WA. 1983. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Sci Soc Am J. 45(5): 945-951.
Hariyadi H, Larasati TRD, Siswanto S. 2012. Pemanfaatan bagase tebu dan limbah nanas sebagai bahan baku penghasil biogas. JPSL. 2(2):56–64.
Hope CFA, Burns RG. 1987. Activity origins and location of cellulases in a silt loam soil. Biol Fert Soils. 5: 164-170 https://doi.org/10.1007/BF00257653
Hossain MF. 2016. World pineapple production: An overview. Afri J Food Agric Nutri Dev (AJFAND). 16(4):11443–11456. DOI:10.18697/ajfand.76.15620
Kementerian Pertanian. 2015.Outlook Komoditas Pertanian Subsektor Hortikultura Nenas.Jakarta (ID): Pusat Data dan Sistem Informasi Pertanian. Sekretariat Jendral kementrian Pertanian. 74 hlm.
Klose S, Tabatabai MA. 2000. Urease activity of microbial boimass in soil as affected by cropping systems. Biol Fertil Soils. 31: 191-199. https://doi.org/10.1007/s003740050645
Makoi JHJR, Ndakidemi PA. 2008. Selected soil enzymes: Examples of their potential roles in the ecosystem. Afr J Biotechnol. 7(3):181–191.
Mansur I. 2013. Teknik Silvikultur untuk Reklamasi Lahan Bekas Tambang. Bogor. (ID): SEAMEO BIOTROP.
Mohandesi N, Siadat SOR, Haghbeen K, Hesampour A. 2016. Cloning and expression of Saccharomyces cereviciae SUC2 gene in yeast pltform and characterization of recombinant enzyme biochemical properties. Biotech. 6(2):1-10.
Natsheh B, Mousa S. 2014. Effect of organic and inorganic fertilizer aplication on soil and cucumber (Cucumis sativa L) plant productivity. Int J Agric Forest 4 (3) : 166-170. DOI: 10.5923/j.ijaf.20140403.03
Nurmegawati N, Makruf E, Sugandi D, Rahman T. 2012. Tingkat kesuburan dan rekomendasi pemupukan N, P, dan K tanah sawah Kabupaten Bengkulu Selatan. J Solum. 9(2):11–18. https://doi.org/10.25077/ js.9.2.61-68.2012
Patricio JHP. 2014. How much soil organic carbon is there in agricultural lands? A case study of prime agricultural province in Southern Philippines. AES Bioflux. 6(3): 194-208.
Polacco JC, Mazzafera P, Tezotto T. 2013. Opinion - Nickel and urease in plants: Still many knowledge gaps. Plant Sci. 199–200:79–90. doi.org/10.1016/j.plantsci. 2012.10.010
Ramli ANM, Manas NHA, Hamid AAA, Hamid HA, Illias RM. 2018. Comparative structural analysis of fruit and stem bromelain from Ananas comosus. Food Chem. 266:183–191. doi.org/10.1016/j.foodchem. 2018.05.125
Rao NSS. 2008. Mikroorganisme Tanah dan Pertumbuhan. Jakarta [ID]: UI Press.
Rojas LF, Cortés CF, Zapata P, Jiménez C. 2018. Extraction and identification of endopeptidases in convection dried papaya and pineapple residues: A methodological approach for application to higher scale. Waste Manag. 78:58–68. https://doi.org/10.1016/j.wasman.2018.05.020
Rosmarkum A, Yuwono NW. 2002. Ilmu Kesuburan Tanah . Yogyakarta (ID): Kanisius
Saravanan P, Muthuvelayudham R, Viruthagiri T. 2013. Enhanced production of cellulase from pineapple waste by response surface methodology. J Eng. 2013(4):1–9. doi.org/10.1155/2013/979547
Sarker TC, Incerti G, Spaccini R, Piccolo A, Mazzoleni S, Bonanomi G. 2018. Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy. Soil Biol Biochem. 117:175–184. DOI:10.1016/j.soilbio.2017.11. 011
Schhinner F, Ohlinger R, Kandeler F, Margesin R. 1996. Methods in Soil Biology. Berlin Heidelberg (DE) : Springer Verlag. DOI: 10.1007/978-3-642-60966-4
Siddappaji MH, Scoles DR, Khrisnankutty SM, Calla B, Claugh SJ, Zieliensky RE,Paige KN,. 2015. The role of invertase in plant compensatory responses to simulated herbivory. BMC Plant Biol, 15(1): 1-12. https://doi.org/10.1186/s12870-015-0655-6
Sossa, EL, Agbangba CE, Accalogoun SGGS, Amadji GL, Agbossou KE, Hounhouigan DJ. 2017 Residues management practices and nitrogen-potassium-fertilization influence on the quality of pineapple (Ananas comosus (L) Merri ) sugarloaf fruit exportation and local consumption. Agronomy. 7(2): 1-15. https://doi.org/10.3390/agronomy7020026
Taggar MS, Bhatia S, Batta SK. 2011. Sucrose accumulation in sugarcane : A potensial target for crop improvement. Acta Physsiologiae Platarum 33(5): 1571-1583 DOI : 10.1007/s11738-011-0741-9
Tarafdar JC, Marschner H. 1994. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem. 26(3):387–395. https:// doi.org/10.1016/0038-0717(94)90288-7
Utobo EB, Tewari L. 2015. Soil enzymes as bioindicators of soil ecosystem status. Appl Ecol Environ Res. 13(1):147-169. DOI: 10.15666/aeer/1301_147169
Wallenstein M, Allison SD, Ernakovich J, Steinweg JM, Sinsabaugh R. 2011. Controls on the Temperature Sensitivity of Soil Enzymes: A Key Driver of In Situ Enzyme Activity Rates. Berlin, Heidelberg (DE): Springer. 22:245–258. DOI:10.1007/978-3-642-14225-3_13
Wardy W, Saalia FK, Steiner-Asiedu M, Budu AS, Sefa-Dede S. 2009. A comparison of some physical, chemical and sensory attributes of three pineapple (Ananas comosus) varieties grown in Ghana. Afr J Food Sci. 3(1):022–025.
Widiatmaka, Mediranto A, Widjaya H. 2015. Karakteristik, klasifikasi tanah dan pertumbuhan tanaman jati (tectonia grandis Linn f) var.Unggulan Nusantara di Ciampea, Kabupaten Bogor. JPSL 5(1): 87-97
Winarso.S. 2005. Kesuburan Tanah : Dasar Kesehatan dan Kualitas Tanah. Yogyakarta (ID): Gava Media
Zhang HN, Sun WS, Sun GM, Liu SH, Li YH, Wu QS, Wei YZ. 2016. Phenological growth stages of pineapple (Ananas comosus) according to the extended Biologische Bundesantalt, Bundessortenamt and Chemische Industrie scale. Annals App Biol. 169(2):311–318. doi.org/10.1111/aab.12292
Authors
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).