Syahrizal Koem


Drought is one of the natural disasters that can cause disadvantages, especially in the agricultural sector. Gorontalo Regency is the corn production center, yet it has high vulnerability and low adaptive capacity towards the climate change. In addition, its vulnerability to the impact of drought is seen from the high potential for environmental damage, the disadvantages due to the drought and the potential of the population exposed to drought. Standardized Precipitation Index (SPI) is the estimator tool employed to assess the severity of the drought. This study utilized monthly rainfall data from 17 stations in Gorontalo Regency and 2 stations outside Gorontalo Regency during the period of 1981-2016. The SPI values were calculated by utilizing DrinC software and spatial interpolation of drought using ArcGIS software. The result shows that the longest time of drought occurred in 1982, 1986, 1997 and 2015 due to El Nino phenomenon with moderate and strong category with long duration. Further, analysis result in the last four decades reveals that the worst drought occurred in 1982. Based on the result of frequency analysis on the SPI-3, SPI-6 and SPI-12 time scales, drought is frequently taken place in western regions. Thus, this result can be a reference in managing the water resources in Gorontalo Regency. The plan in the commodity-based agriculture sector can be developed since the result of spatial analysis indicates that SPI can identify the diversity of drought severity. It is necessary to place the climate change scenarios in order to prepare the adaptation and mitigation measures of drought impacts due to the uncertainty of future climate conditions. This is very helpful to provide an idea about the dynamics of drought.



Abramovitz, M., L.A. Stegun, 1964. Handbook of mathematical functions. National bureau of standards. Washington, D.C.

[BNPB] Badan Nasional Penanggulangan Bencana, 2015. Kajian Risiko Bencana Gorontalo 2016-2020. Gorontalo: Deputi Bidang Pencegahan Dan Kesiapsiagaan, pp. 10-15.

[BPS] Badan Pusat Statistik, 2016. Provinsi Gorontalo Dalam Angka. Gorontalo: BPS Provinsi Gorontalo, pp. 161-163.

Chen, F.W., dan C. H. Liu, 2012. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environmental 10, pp. 209-222.

Chen, Z., G. Yang, 2013. Analysis of drought hazards in North China: distribution and interpretation. Natural Hazards 65, pp. 279-294.

Das, D.M., R. Singh, A. Kumar, D.R. Mailapalli, A. Mishra, C. Chatterjee, 2016. A multi-model ensemble approach for stream flow simulation. Dalam: Modeling Methods and Practices in Soil and Water Engineering. edited by Panigrahi, B and Goyal. CRC Press, pp. 72-102.

[DNPI] Dewan Nasional Perubahan Iklim, 2011. Pemetaan Kerentanan Di Daerah Provinsi Serta Inventarisasi Kebijakan Dan Kelembagaan Dalam Rangka Antisipasi Dampak Perubahan Iklim. Jakarta: Kementerian BUMN, pp. 1-38.

[DSDAN] Dewan Sumber Daya Air Nasional, 2010. Pola pengelolaan sumber daya air wilayah sungai Limboto- Bolango-Bone. Jakarta: Kementerian PU, pp. 58-61.

Edwards, D.C. 1997. Characteristics of 20th century drought in the united states at multiple time scales. Thesis. Graduate School, Colarado State University. Colorado.

Gocic, M., dan S. Trajkovic. 2014. Spatiotemporal characteristics of drought in Serbia. Journal of Hydrology 510, pp. 110-123.

Hayes, M.J., M.D. Svoboda, D.A. Wilhite, O.V. Vanyarkho, 1998. Monitoring the 1996 drought using the standardized precipitation index. American Meteorological Society 80 (3), pp. 429-438.

Jia, J.Y., L.Y. Han, Y.F. Liu, N. He, Q. Zhang, X. Wan, Y.F. Zhang, J.M. Hu, 2016. Drought risk analysis of maize under climate change based on natural disaster system theory in Southwest China. Acta Ecologica Sinica 36, pp. 340-349.

Keyantash, J., dan J.A. Dracup, 2002. The quantification of drought: an evaluation of drought indices. American Meteorological Society 83, pp. 1167-1180.

Koem, S., dan Rusiyah, 2017. Monitoring of Drought Events in Gorontalo Regency. IOP Conf. Series: Earth and Environmental Science 98, pp. 012053.

Lu, G.Y., dan D.W. Wong, 2008. An adaptive inverse-distance weighting spatial interpolation technique. Computers and Geosciences 34, pp. 1044-1055.

Mahajan, D.R., dan B.M. Dodamani, 2016. Spatial and temporal drought analysis in the Krishna river basin of Maharashtra, India. Cogent Engineering 3 (1), pp. 1-15.

Mello, C.R., J.M. Lima, A.M. Silva, J.M. Mello, M.S. Oliveira, 2003. Kriging and inverse-square-distance for the interpolation of rainfall equation parameters. R. Bras. Ci. Solo 27, pp. 925-933.

McKee, T.B., N.J. Doesken, J. Kleist, 1993. The relationship of drought frequency and duration to time scales. In proceedings of the eighth conference on applied climatology, American meteorological society. Anaheim (CA), 17–22 January 1993, pp.179–184.

Moriasi, D.N., J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D. Harmel, T.L. Veith, 2007. Model Evaluation Guidelines For Systematic Quantification Of Accuracy In Watershed Simulations. American Society of Agricultural and Biological Engineers 50 (3), pp. 885-900.

Nam, W.H., M.J. Hayes, M.D. Svoboda, T. Tadesse, D.A. Wilhite, 2015. Drought hazard assessment in the context of climate change for South Korea. Agricultural Water Management 160, pp. 106-117.

Patel, N.R., P. Chopra, V.K. Dadhwal, 2007. Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorol. Applications 14, pp. 329-336.

Penalba, O.C., dan J.A. Rivera, 2016. Precipitation response to El Niño/La Niña events in Southern South America– emphasis in regional drought occurrences. Advances in Geosciences 42, pp. 1-14.

Prudhomme, C. et al, 2014. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl. Acad. Sci. U. S. A 111, pp. 3262–3267.

Rahman, M.R., dan H. Lateh, 2016. Meteorological drought in Bangladesh: assessing, analysing and hazard mapping using SPI, GIS and monthly rainfall data. Environmental Earth Sciences 75 , pp. 1-20.

Saravi, M.M., A. A. Safdari, A. Malekian, 2009. Intensity-Duration-Frequency and spatial analysis of droughts using the Standardized Precipitation Index. Hydrology and Earth System Sciences Discussions 6, pp. 1347–1383.

Serrano, S.M.V., 2006. Spatial and temporal analysis of droughts in the Iberian Peninsula (1910–2000). Hydrological Sciences Journal 51 (1), pp. 83-97.

Sumarno, J., Harianto, N. Kusnadi, 2015. Peningkatan Produksi Dan Efisiensi Usahatani Jagung Melalui Penerapan Pengelolaan Tanaman Terpadu (PTT) Di Gorontalo. Jurnal Manajemen dan Agribisnis 12 (2), pp. 79-91.

Tigkas, D., H. Vangelis, G. Tsakiris, 2014. DrinC: a software for drought analysis based on drought indices. Earth Science Informatics 8 (3), pp. 697-709.

Tsakiris, G., D. Tigkas, H. Vangelis, D. Pangalou, 2013. DrinC Drought Indices Calculator. Getting Started Guide, Version 1.5. Athens. Greece, pp. 1-7.

Van Lanen, H.A.J., L. M. Tallaksen., G. Rees, 2007. Droughts and climate change. In: Accompanying document to communication addressing the challenge of water scarcity and droughts in the European Union. Commission of the European Communities. Brussels. Belgium, pp. 1-13.

[WMO] World Meteorological Organization., 2012. Standardized Precipitation Index User Guide. Switzerland.

Xie, H., C. Ringler, T. Zhu, A. Waqas, 2013. Droughts in Pakistan: a spatiotemporal variability analysis using the Standardized Precipitation Index. Water International 8 (5), pp. 620-631.


Syahrizal Koem
s.koem@ung.ac.id (Primary Contact)
KoemS. (2018) “KARAKTERISTIK SPASIOTEMPORAL KEKERINGAN METEOROLOGI DI KABUPATEN GORONTALO TAHUN 1981-2016”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management). Bogor, ID, 8(3), pp. 355-364. doi: 10.29244/jpsl.8.3.355-364.

Article Details