Penekanan Sumber Inokulum Rigidoporus microporus dengan Solarisasi Tanah dan Penambahan Bahan Organik
Abstract
Suppression of Rigidoporus microporus Inoculum Sources with Soil Solarization and Organic Matter Amendmend
White root rot fungus (Rigidoporus microporus) is one of the devastating plant pathogens on hevea rubber plantation. Its high ability to live as saprophytes on plant stumps and dead roots debris makes this part as an important source of inoculum, both for neighboring healthy trees and at the time of replanting. Therefore, reducing this source of inoculum is an important key to preventing further pathogen dispersal. Soil solarization is a one of the methods of soil disinfection before planting for controlling certain pests and diseases and for reducing the use of synthetic compound in the soil. This study aims to determine the effect of soil solarization and organic matter amendment on the survival of R. microporus. Soil solarization significantly suppressed the survival of R. microporus at both soil depths, 5 and 15 cm from soil surface. Meanwhile, organic matter treatment had no significant effect in suppressing the development of R. microporus. The suppression of the inoculum was higher with longer period of soil solarization. Our results indicate that soil solarization stimulates fluorescent bacteria that may in turn suppress the white root rot fungus.
Downloads
References
Akpaja EO, Ogbebor NO. 2020. Field evaluation of Hevea brasiliensis clones for the incidence of white root disease in Nigeria. Journal of Plantation Crops. 49(1):1–6. DOI: https://doi.org/10.25081/jpc.2021.v49.i1.7054.
Alabouvette C. 1998. Management of diseases induced by soil-borne pathogens, solarization and biological control. Journal of Agricultural and Marine Sciences. 3(1):65–76. DOI: https://doi.org/10.24200/jams.vol3iss1pp65-76.
Backstrom MJ. 2002. Methyl bromide: the problem, the phase out, and the alternatives. Drake Journal of Agricultural Law. 7:213–239.
Baysal-Gurel F, Kabir MN, Liyanapathiranage. 2019. Effect of organic inputs and solarization for the suppression of Rhizoctonia solani inwoody ornamental plant production. Plants. 8(5):1–13. DOI: https://doi.org/10.3390/plants8050138.
[BPS] Badan Pusat Statistik. 2022. Produksi perkebunan rakyat menurut jenis tanaman. 2000-2021. https://www.bps.go.id/subject/54/perkebunan.html#subjekViewTab3 [diakses 30 Juni 2022].
Cicu. 2005. Penekanan penyakit akar gada pada tanaman kubis melalui perlakuan tanah pembibitan. Jurnal Hortikultura 5(1): 58–66.
Gohet E, Can TV, Louanchi M, Despreaux D. 1991. New developments inchemical control of white root disease of Hevea brassiliensis in Africa. Crop Protection 10:234–238. DOI: https://doi.org/10.1016/0261-2194(91)90049-W.
Jayasuriya KE, Thennakoon BI. 2007. Biological control of Rigidoporus microporus, cause of white root disease in rubber. Ceylon Journal of Science. 36(1):9–16.
Kartini, Widodo. 2000. Pengaruh solarisasi tanah terhadap pertumbuhan Sclerotium rolfsii SACC. dan patogenisitasnya pada kacang tanah. Buletin Hama dan Penyakit Tumbuhan. 12(2):53–59.
Katan J. 1981. Solar heating so control of soil borne pests. Annual Review of Phytopathology. 19:211–236. DOI: https://doi.org/10.1146/annurev.py.19.090181.001235.
Katan J, DeVay JE. 1991. Soil Solarization. London (UK): CRC press.
Kusdiana APJ, Munir M, Suryaningtyas H. 2015. Pengujian biofungisida berbasis mikroorganisme antagonis untuk pengendalian penyakit jamur akar putih pada tanaman karet. Jurnal Penelitian Karet. 33(2):143–156. DOI: https://doi.org/10.22302/jpk.v33i2.179.
Mohammed CL, Rimbawanto A, Page DE. 2014. Management of basidiomycete root and stem rot disease in oil palm, rubber and tropical hardwood plantation crops. Forest Pathology. 44:428–446. DOI: https://doi.org/10.1111/efp.12140.
Nam MG, Wawa NS, Ejolle EE, Nkengafac NJ. 2017. Management of white root rot disease (fomes) in Hevea brasiliensis plantations in Cameroon. American Journal of Plant Sciences. 8:1646–1658. DOI: https://doi.org/10.4236/ajps.2017.87114.
Nandris D, Nicole J, Geiger JP. 1987. Root diseases of rubber trees. Plant Disease. 71(4):298–306. DOI: https://doi.org/10.1094/PD-71-0298.
Nandris D, Nicole M, Geiger JP. 1988. Root-rot disease of the rubber tree in Ivory Coast. 1. Severity, dynamics, and characterization of epidemics. Canadian Journal of Forest Research. 18(10):1248–1254. DOI: https://doi.org/10.1139/x88-192.
Ogbebor NO, Adekunle AT, Eghafona NO, Ogboghodo AI. 2013. Incidence of Rigidoporus microporus (Klotzsch) Imaz of para rubber in Nigeria. Researcher. 5(12):181–184.
Oghenekaro AO, Daniel G, Asiegbu FO. 2015. The saprotrophic wood-degrading abilities of Rigidoporus microporus. Silva Fennica. 49(4):1–10. DOI: https://doi.org/10.14214/sf.1320.
Pinkerton JN, Ivors KL, Reeser PW, Bristoww PR, Windom GE. 2002. The use of soil solarization for management of soilborne plant pathogens in strawberry and red raspberry production. Plant Disease. 86(6):645–651. DOI: https://doi.org/10.1094/PDIS.2002.86.6.645.
Ristaino JB, Thomas W. 1997. Agriculture, methyl bromide, and the ozone hole. Plant Disease. 81(9):964–977. DOI: https://doi.org/10.1094/PDIS.1997.81.9.964.
Stapleton JJ. 2000. Soil solarization in various agricultural production systems. Crop Protection. 19(8–10):837–841. DOI: https://doi.org/10.1016/S0261-2194(00)00111-3.
Stapleton JJ, Devay JE. 1986. Soil solarization: a non- chemical approach for management of plant pathogens and pests. Crop Protection. 5(3):190–198. DOI: https://doi.org/10.1016/0261-2194(86)90101-8.
Ubogu M. 2013. Assessment of root zone mycoflora of three Hevea brasiliensis (Rubber) clones at Akwete plantations and their in vitro growth inhibition of Rigidoporus lignosus. European Journal of Experimental Biology. 3(2):618–623.
Widiantini F, Purnama A, Yulia E, Formanda D. 2016. Keefektifan oligochitosan dalam menekan pertumbuhan jamur patogen Rigidoporus lignosus [(Klotzsch) Imazeki] penyebab penyakit jamur akar putih pada tanaman cengkeh secara in vitro. Jurnal Agrikultura. 27(1):59–64. DOI: https://doi.org/10.24198/agrikultura.v27i1.8477.
Widodo, Budiarti T. 2009. Suppression of Fusarium root rot and southern blight on peanut by soil solarization. Journal of International Society for Southeast Asian Agricultural Sciences. 15(1):118–125.
Wiyono S, Widodo, Natsuaki KT. 2020. Detection of white root fungus (Rigidoporus microporus (Fr.) Overeem) in soil using cassava root baits. Journal of International Society for Southeast Asian Agricultural Sciences. 26(1):93–99.
Yücel S, Özarslandan A, Can C. 2017. Effect of soil solarization combined with reduced doses of the fumigant metam sodium on management of some soil borne pathogens and root-knot nematode on pepper grown in greenhouse. Net Journal of Agricultural Science. 5(2):31–37. DOI: https://doi.org/10.30918/NJAS.52.17.029.
Copyright (c) 2022 Jurnal Fitopatologi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in Jurnal Fitopatologi Indonesia agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.