Kejadian Indel Simultan pada Intron 7 Gen Branched-Chain α-Ketoacid Dehydrogenase E1a (BCKDHA) pada Sapi Madura

  • Asri Febriana Departemen Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680
  • Achmad Farajallah
  • Dyah Perwitasari
Keywords: BCKDHA gene, indel simultaneous, Madura cattle

Abstract

Madura cattle is one of the Indonesian local cattle breeds derived from crossing between Zebu cattle (Bos indicus) and banteng (Bos javanicus). Branched-chain α-ketoacid dehydrogenase (BCKDH) is one of the main enzyme complexes in the inner mitochondrial membrane that metabolizes branched chain amino acid (BCAA), ie valine, leucine, and isoleucine. The diversity of the nucleotide sequences of the genes largely determine the efficiency of enzyme encoded. This paper aimed to determine the nucleotide variation contained in section  intron 7, exon 8, and intron 8 genes BCKDHA on Madura cattle. This study was conducted on three Madura cattle that used as bull race (karapan), beauty contest (sonok), and beef cattle. The analysis showed that the variation in intron higher than occurred in the exon. Simultaneous indel found at base position 34 and 68 in sonok cattle. In addition, the C266T variant found in beef cattle. These variants do not cause significant changes in amino acids. There was no specific mutation in intron 7, exon 8, and intron 8 were found in Madura cattle designation. This indicated the absence of differentiation Madura cattle designation of selection pressure of BCKDHA gene.

Downloads

Download data is not yet available.

Author Biographies

Achmad Farajallah
Departemen Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680
Dyah Perwitasari
Departemen Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680

References

Allison LA. 2007. Fundamental Molecular Biology. Oxford (UK): Blackwell Publishing Ltd.

Burge CB, Tuschl T, Sharp PA. 1999. Splicing of precursors to mRNAs by the spliceosomes, in Gesteland RF, Cech TR, Atkins JF (eds). The RNA world, 2nd ed. Cold Spring Harbor (US): Cold Spring Harbor Laboratory Press.

Cartegni L, Chew SL, Krainer AR. 2002. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nature Reviews Genetics. 3(4): 285-298. http://doi.org/bkpjvs

Elsik CG, Tellam RL, Worley KC, and 306 co-authors [Bovine Genome Sequencing and Analysis Consortium]. 2009. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science. 324(5926): 522-528. http://doi.org/b3bzx5

Febriana A. 2011. Filogeni Berdasarkan Sekuens DNA Mitokondria Gen Cytochrome Oxidase I (Gen COI) pada Beberapa Bangsa Sapi Lokal Indonesia. [Skripsi]. Bogor (ID): Institut Pertanian Bogor.

Firdhausi NF, Farajallah A, Perwitasari D. 2010. Asal usul sapi Madura berdasarkan penanda DNA mitokondria. [Tesis]. Bogor (ID): Institut Pertanian Bogor.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41(1): 95-98.

Hare MP, Palumbi SR. 2003. High intron sequence conservation across three mammalian orders suggests functional constraints. Molecular Biology and Evolution. 20(6): 969-978. http://doi.org/ck5pjg

Ibeagha-Awemu EM, Kgwatalala P, Ibeagha AE, Zhao X. 2008. A critical analysis of disease-associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig. Mammalian Genome. 19(4): 226-245. http://doi.org/dmv9qk

Kutsiyah F. 2012. Analisis pembibitan sapi potong di pulau madura. Wartazoa. 22(3): 113-126.

Lynch M. 2006. The origins of eukaryotic gene structure. Molecular Biology and Evolution. 23(2): 450-468. http://doi.org/fb4pzq

Mohamad K, Olsson M, van Tol HTA, Mikko S, Vlamings BH, Andersson G, Rodriguez-Martinez H, Purwantara BE, Paling RW, Colenbrander B, Lenstra JA. 2009. On the origin of Indonesian cattle. PLoS ONE. 4(5): e5490. http://doi.org/b65mtp

Nijman IJ, Otsen M, Verkaar ELC, de Ruitjer C, Hanekamp E, Ochieng JW, Shamshad S, Rege JEO, Hanotte O, Barwegen MW, Sulawati T, Lenstra JA. 2003. Hybridization of banteng (Bos javanicus) and zebu (Bos indicus) revealed by mitochondrial DNA, satellite DNA, AFLP microsatelites. Heredity. 90: 10-16. http://doi.org/c2grht

Paolella P. 1998. Introduction to molecular biology. Massachusetts (US): McGraw Hill Companies, In.

Patel MS, Harris RA. 1995. Mammalian α-keto acid dehydrogenase complexes: gene regulation and genetic defects [review]. The FASEB Journal (The Journal of the Federation of American Societies for Experimental Biology). 9(12): 1164-1172.

Soehadji. 1993. Kebijakan pengembangan ternak potong di Indonesia tinjauan khusus sapi Madura. Di dalam: Prosiding Pertemuan Ilmiah Hasil Penelitian dan Pengembangan Sapi Madura. hlm 1-12.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution. 30(12): 2725-2729. http://doi.org/5v5

Wijono DB, Setiadi B. 2004. Potensi dan keragaman sumber daya genetik sapi madura. Di dalam: Prosiding Lokakarya Nasional Sapi Potong. hlm 42-52.

Published
2015-08-26
How to Cite
FebrianaA., FarajallahA., & PerwitasariD. (2015). Kejadian Indel Simultan pada Intron 7 Gen Branched-Chain α-Ketoacid Dehydrogenase E1a (BCKDHA) pada Sapi Madura. Jurnal Ilmu Pertanian Indonesia, 20(2), 97-102. https://doi.org/10.18343/jipi.20.2.97