Keanekaragaman Mikrob Fungsional Rizosfer Nanas dengan Berbagai Tingkat Produktivitas

  • Aditya Dyah Utami Akademi Komunitas Perkebunan Yogyakarta, Depok, Sleman, Yogyakarta 55281
  • Suryo Wiyono Departemen Proteksi Tanaman, Fakultas Pertanian, Institut Pertanian Bogor, Kampus IPB Darmaga, Bogor 16680
  • Rahayu Widyastuti
  • Priyo Cahyono PT Great Giant Food, Jalan Lintas Timur Sumatera, KM 77 Arah Menggala, Terbanggi Besar, Lampung Tengah, Kabupaten Lampung Tengah, Lampung 34163

Abstract

Functional microbes of rhizosphere play important roles in nutrient transformation and controlling disease as well as in supporting plant growth and development. However, there is no study on the role of functional microbes on pineapple productivity. The purpose of this study was to investigate the abundance and diversity of soil functional microbes at different growth phases at two levels of productivity and their correlations to disease incidence. The research process included sampling of pineapple rhizospheric soil from vegetative and generative phases pineapples at low and high plant productivity sites, observations of disease incidence, and isolations of functional microbes. Functional groups of bacteria were Azotobacter, phosphate-solubilizing bacteria, potassium-solubilizing bacteria, antibiotics-producing bacteria, IAA-producing bacteria, and chitinolytic bacteria. The soil sampling method was simple randomized sampling at 6 locations with an area of each location ± 5 ha with a depth of 20 cm. Rhizosphere were taken in plants grown in high productivity area (>60tons/ha) and low productivity area (<60 tons/ha) in vegetative and generative phases. The results showed that potassium-solubilizing bacteria, chitinolytic bacteria, and IAA-producing bacteria were more abundant during the generative phase compared to those during vegetative phase. While Azotobacter, phosphate-solubilizing bacteria, and antibiotic-producing bacteria were more predominant during vegetative phase at various crop productivy. Total density of microbes was higher in soil with high crop productivity than that in soil with low crop productivity. The abundance of chitinolytic bacteria and IAA-producing bacteria had negative correlation with disease caused by Erwinia chrysanthemi and Phytophthora cinnamomi.

Keywords: chitinolytic bacteria, growth phase, IAA, pineapple disease

Downloads

Author Biography

Rahayu Widyastuti

Functional microbes of rhizosphere play important roles in nutrient transformation and controlling disease as well as in supporting plant growth and development. However, there is no study on the role of functional microbes on pineapple productivity. The purpose of this study was to investigate the abundance and diversity of soil functional microbes at different growth phases at two levels of productivity and their correlations to disease incidence. The research process included sampling of pineapple rhizospheric soil from vegetative and generative phases pineapples at low and high plant productivity sites, observations of disease incidence, and isolations of functional microbes. Functional groups of bacteria were Azotobacter, phosphate-solubilizing bacteria, potassium-solubilizing bacteria, antibiotics-producing bacteria, IAA-producing bacteria, and chitinolytic bacteria. The soil sampling method was simple randomized sampling at 6 locations with an area of each location ± 5 ha with a depth of 20 cm. Rhizosphere were taken in plants grown in high productivity area (>60tons/ha) and low productivity area (<60 tons/ha) in vegetative and generative phases. The results showed that potassium-solubilizing bacteria, chitinolytic bacteria, and IAA-producing bacteria were more abundant during the generative phase compared to those during vegetative phase. While Azotobacter, phosphate-solubilizing bacteria, and antibiotic-producing bacteria were more predominant during vegetative phase at various crop productivy. Total density of microbes was higher in soil with high crop productivity than that in soil with low crop productivity. The abundance of chitinolytic bacteria and IAA-producing bacteria had negative correlation with disease caused by Erwinia chrysanthemi and Phytophthora cinnamomi.

Keywords: chitinolytic bacteria, growth phase, IAA, pineapple disease

References

Adam A, Yusof Y, Yahya A. 2016. Extraction of pineapple leaf fibre: josapine and moris. Journal of Engineering and Applied Sciences. 11(1):161165.

Ahemad M, Kibret C. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University. 26: 120. https://doi.org/10. 1016/j.jksus.2013.05.001

Al-Maliki S, Ebreesum H. 2020. Changes in soil carbon mineralization, soil microbes, roots density and soil structure following the application of the arbuscular mycorrhizal fungi and green algae in the arid saline soil. Rhizosphere 14: 17. https://doi.org/ 10.1016/j.rhisph.2020.100203

Bhaduri D, Rakshit R, Chakraborty K. 2014. Primary and secondary nutrients-a boon to defense system against plant diseases. Journal of Biological Stress Management. 5(3): 461466. https://doi.org/ 10.5958/0976-4038.2014.00597.1

Campbell R. 1985. Plant Microbiology. Britain (UK): The Castlefield Press.

Chen ZJ, Tian YH, Zhang Y, Song BR, Li HC. 2016. Effects of root organic exudates on rhizosphere microbes and nutrientremoval in the constructed wetlands. Ecological Engineering. 92: 243250. https://doi.org/10.1016/j.ecoleng.2016.04.001

Fraser FC, Todman LC, Corstanje R, Deeks LK, Harris JA, Pawlett M. 2016. Distinct respiratory responses of soils to complex organic substrate are governed predominantly by soil architecture and its microbial community. Soil Biology and Biochemistry. 103: 493501. https://doi.org/10.1016/j.soilbio.2016. 09.015

Harahap F, Nusyirwan. 2014. Induksi tunas nanas (Ananas comosus L. Merr) in vitro dengan pemberian dosis auksin dan sitokinin yang berbeda. Jurnal Kesehatan Medika saintika. 15(11): 124131.

Hogendorp BK, Cloyd RA, Swiader JM 2006. Effect of nitrogen fertility on reproduction and development of citrus mealybug, Planococcus citri Risso (homoptera: Pseudococcidae), feeding on two colors of coleus, Solenostemon scutellarioides L. codd. Environmental Entomology. 35(2): 201211. https://doi.org/10.1603/0046-225X-35.2.201

Jha CK, Saraf M 2015. Plant growth promoting rhizobacteria (PGPR): a review. Journal of Agricultural Research and Development. 5(2): 108119.

Jiang Y, Wu Y, Hu N, Li H, Jiao J. 2020. Interactions of bacterial-feeding nematodes and indole-3-acetic acid (IAA)-producing bacteria promotes growth of Arabidopsis thaliana by regulating soil auxin status. Applied Soil Ecology. 147: 19. https://doi.org/ 10.1016/ j.apsoil.2019.103447

Kamaruzzaman MA, Abdullah SRS, Hasan HA, Hassan M, Othman AR, Idris M. 2020. Characterisation OF Pb-RESISTANT plant growth-promoting rhizobacteria (PGPR) from Scirpus grossus. Biocatalysis and Agricultural Biotechnology 23. https://doi.org/10.1016/ j.bcab.2019.101456

Kniffin JK, Balser TC. 2008. Soil fertility and the impact of exotic invasion on microbial communities in Hawaiian forests. Microbial Ecology. 56: 5563. https://doi.org/10.1007/s00248-007-9323-1

Moreno-Salazar R, Sánchez-García I, Chan-Cupul W, Ruiz-Sánchez E, Hernández-Ortega HA, Pineda-Lucatero J, Figueroa-Chávez D. 2020. Plant growth, foliar nutritional content and fruit yield of Capsicum chinense biofertilized with Purpureocillium lilacinum under greenhouse conditions. Scientia Horticulturae 261: 18. https://doi.org/10.1016/ j.scienta.2019.108950

Park Y-G, Mun B-G, Kang S-M, Hussain A, Shahzad R, Seo C-W. 2017. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS ONE 12(3): 128. https://doi.org/10.1371/journal. pone.017320 3

Peng H, de-Bashan LE, Bashan Y, Higgins BT. 2020. Indole-3-acetic acid from Azosprillum brasilense promotes growth in green algae at the expense of energy storage products. Algal Research 47: 110. https://doi.org/10.1016/j.algal.2020.101845

Proctor C, He Y. 2017. Quantifying root extracts and exudates of sedge and shrub in relation to root morphology. Soil Biology and Biochemistry. 114: 168180. https://doi.org/10.1016/j.soilbio.2017. 07.006

Ramli ANM, Manas NHA, Hamid AAA, Hamid H, Illias RM. 2018. Comparative striuctural analysis of fruit and stem bromealin from Ananas comosus. Food Chemistry. 266: 183191. https://doi.org/ 10.1016/j.foodchem.2018.05.125

Salama A, Hasanin M, Hesemann P. 2020. Synthesis and antimicrobial properties of new chitosan derivatives containing guanidinium groups. Carbohydrate Polymers. 241. https://doi.org/ 10.1016/j.carbpol.2020.116363

Schnitzer SA, Klironomos JN, Hillerislambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, Van Nes EH, Scheffer M. 2011. Soil microbes drive the classic plant diversity–productivity pattern. Ecology. 92(2): 296303. https://doi.org/10.1890/10-0773.1

Shazad T, Chenu C, Genet P, Barot S, Perveen N, Mougin C, Fontaine S. 2015. Contribution of exudates, arbuscular mycorrhizal fungi and litterdepositions to the rhizosphere priming effect induced by grasslandspecies. Soil Biology and Biochemistry. 80: 146155. https://doi.org/10.1016/ j.soilbio.2014.09.023

Sobral JK, Araujo WL, Mendes R, Geraldi IO, Kleiner AAP, Azevedo AL. 2004. Isolation and characterization of soybean associated bacteria and their potential for plant growth promotion. Environmental Microbiology. 6(12): 12441251. https://doi.org/10.1111/j.1462-2920.2004.00658.x

Syamsia, Kuswinanti T, Syam’un E, Masniawati A. 2015. The potency of endophytic fungal isolates collected from local aromatic rice as indole acetic acid (IAA) producer. Procedia Food Science. 3: 96103. https://doi.org/10.1016/j.profoo.2015.01.0 09

Weber OB, Lima RN, Crisostomo LA, Freitas JAD, Carvalho ACPP, Maia AHN. 2009. Effect of diazotrophic bacterium inoculation and organic fertilization on yield champaka pineapple intercropped with irrigated sapota. Plant Soil. 327(1): 355364. https://doi.org/10.1007/s11104-009-0059-1

Yu Z, Pei H, Jiang L, Hou Q, Nie C, Zhang L. 2018. Phytohormone addition coupled with nitrogen depletion almost tripled thelipid productivities in two algae. Bioresource Technology. 247: 904914.

Published
2020-10-27
How to Cite
UtamiA. D., WiyonoS., WidyastutiR., & CahyonoP. (2020). Keanekaragaman Mikrob Fungsional Rizosfer Nanas dengan Berbagai Tingkat Produktivitas. Jurnal Ilmu Pertanian Indonesia, 25(4), 584-591. https://doi.org/10.18343/jipi.25.4.584
Erma Suryanti, Dewi Chusniasih, Muhammad Asril, Ika Agus Rini , Wulandari Putri Antika, Nadia Rahmah (2023)
Bioprospeksi Bakteri Asal Akar Nanas (Ananas comosus L. Merr) Lahan Gambut Kayu Agung, Sumatra Selatan, sebagai Agen Biostimulan dan Bioprotektan . Jurnal Ilmu Pertanian Indonesia, 28(3), 352.
10.18343/jipi.28.3.352
Parmeshwar Singh, Anju Meshram, Ravi Kant Singh, Laiq ur Rahman, Vivek Kumar Morya (2024)
Synergistic Enhancement of Cauliflower Yield: Harnessing Phosphate-Solubilizing Bacteria and Nitrogen-Fixing Microbes for Sustainable Agriculture. Journal of Pure and Applied Microbiology, 18(4), 2582.
10.22207/JPAM.18.4.31

Most read articles by the same author(s)